
Sushil Jajodia · Krishna Kant
Pierangela Samarati · Anoop Singhal
Vipin Swarup · Cli� Wang Editors

Secure
Cloud
Computing

Secure Cloud Computing

Sushil Jajodia • Krishna Kant
Pierangela Samarati • Anoop Singhal
Vipin Swarup • Cliff Wang
Editors

Secure Cloud Computing

123

Editors
Sushil Jajodia
Center for Secure Information Systems
George Mason University
Fairfax, VA, USA

Pierangela Samarati
University of Milan
Crema, Italy

Vipin Swarup
The MITRE Corporation
McLean, VA, USA

Krishna Kant
Center for Secure Information Systems
George Mason University
Fairfax, VA, USA

Anoop Singhal
Computer Security Division
National Institute of Standards

and Technology (NIST)
Gaithersburg, MD, USA

Cliff Wang
Computing and Information Science

Division
Information Sciences Directorate
Triangle Park, NC, USA

Images can be viewed in color by visiting the book’s web page on SpringerLink or downloading
the eBook version.

ISBN 978-1-4614-9277-1 ISBN 978-1-4614-9278-8 (eBook)
DOI 10.1007/978-1-4614-9278-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013957058

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Cloud computing continues to experience a rapid proliferation because of its
potential advantages with respect to ease of deploying required computing capacity
as needed and at a much lower cost than running an owned computing infrastructure.
However, the lack of ownership brings in myriad security and privacy challenges
that are quite difficult to resolve. The purpose of this book is to provide a state-of-
the-art coverage of the techniques to address these issues at all levels of the stack
ranging from hardware mechanisms to application level techniques. It is hoped that
the book will be useful to researchers, practitioners, and students in further research
on the subject and the implementation of the techniques in real-life systems.

The term cloud computing has been used for a variety of distributed computing
environments including some traditional ones. For example, a computing infras-
tructure owned by the organization is often referred to as a “private cloud”, which
may or may not be any different from a traditional virtualized data center owned
by the organization. The distinction may come if multiple entities or departments
within the organization share the same infrastructure, but have their own privacy,
information sensitivity, and security concerns. In contrast, a “public cloud” refers
to a facility owned and operated by a separate entity and available for use by
any organization or individual. Ownership and operation models in between these
extremes are also possible, such as a cloud intended for use by enterprises that
provides more restrictive use policies, tighter security, higher availability, etc. than
public clouds. Such “community clouds” have domain specific characteristics,
capabilities, and vulnerabilities different from private or public clouds.

User access to the cloud infrastructure could be provided at varying levels
ranging from underlying physical infrastructure controlled directly by the user all
the way up to built-in software exposed to the users. Traditionally, three specific
levels have been identified: IaaS (Infrastructure as a Service), PaaS (Platform as a
Service), and SaaS (Software as a Service). The challenges in providing the required
security and privacy vary across the levels, with lower level access resulting in more
difficult challenges in protecting the resources from misuse and attacks.

In recent years, there have been numerous incidents of exposure of confidential
data either accidentally or as a result of hacker attacks. Although many of these

v

vi Preface

incidents are not specific to cloud computing, the increasing adoption of cloud
computing by the government and businesses has raised the specter of perhaps even
more damaging information leaks in the future. For example, the Cloud Security
Alliance (CSA) has identified “The Notorious Nine” cloud computing threats for
2013 that are likely to persist in the future as well (see https://cloudsecurityalliance.
org/research/top-threats/). The most significant threats include: (a) exploitation of
side-channel information by VMs to extract sensitive information about other VMs,
including the cryptographic keys, (b) data loss due to accidents or physical hazards,
(c) illegal access to credentials or penetration of critical entities such as hypervisor
by hackers, (d) weak APIs and interfaces, (e) denial of service or other attacks
using the cloud infrastructure, (f) and insider attacks (including the service or
infrastructure providers). Significantly, a common theme identified in the list of
threats is the vulnerabilities brought about by the solutions themselves. This is
normally a result of increased complexity and hence vulnerabilities arising from
software bugs and additional configuration data. For example, the keys and other
parameters needed by cryptographic algorithms must themselves be managed and
protected against attacks and accidental loss.

A key attribute of cloud computing is the involvement of multiple parties
that provide or use the infrastructure or services. These parties could form a
natural hierarchy with physical infrastructure providers at the bottom and the end
users at the top. For example, a cloud computing service provider or a broker
may use physical infrastructure provided by one or more lower level entities,
and expose services or virtual infrastructures used by end users or application
service providers. The sharing of increasingly sophisticated and larger computing
infrastructures among multiple parties makes cloud computing security a very
challenging undertaking. The main reasons include:

1. Lack of trust between various parties up and down the hierarchy (e.g., between
the cloud service provider and the physical infrastructure provider if they
are different, or between service provider and the user) and across a level
(between service providers or users running on the same shared infrastructure).
The trust model drives the level of information access granted among parties
and protections implemented to avoid potential abuse. Some protections (e.g.,
encryption) may rule out certain operations within the cloud or make them very
expensive.

2. Complex privacy and anonymity requirements for information exchanges
between various parties. This drives mechanisms for obfuscating and restricting
access to information content, a careful control of association between different
pieces of information, and avoidance of attribution of information to specific
parties. These requirements may dictate what data can be kept where and where
the operations on the data take place.

3. Operational disruption, integrity violation, and information leaks caused by
attacks that may originate not only from malicious outsiders but also from
legitimate providers and users of the cloud. These aspects in turn drive the level
of protection that needs to be built at various layers including physical infras-
tructure, communication protocols, data storage and transmission, middleware,
etc.

https://cloudsecurityalliance.org/research/top-threats/
https://cloudsecurityalliance.org/research/top-threats/

Preface vii

The chapters in this book address recent advances in addressing some of these
security and privacy issues. Each chapter is intended to be self-contained, although
the reader is expected to have working knowledge of the security and privacy field.
It is hoped that the book will fill an important need in the rapidly emerging field of
cloud computing security.

Images can be viewed in color by visiting the book’s web page on SpringerLink
or downloading the eBook version.

Fairfax, VA, USA Sushil Jajodia
Fairfax, VA, USA Krishna Kant
Crema, Italy Pierangela Samarati
Gaithersburg, MD, USA Anoop Singhal
McLean, VA, USA Vipin Swarup
Triangle Park, NC, USA Cliff Wang

Acknowledgements

We are extremely grateful to the numerous contributors to this book. In particular, it
is a pleasure to acknowledge the authors for their contributions. Special thanks go to
Courtney Clark, Associate Editor at Springer for her support of this project. We also
wish to thank the Army Research Office for their financial support under the grant
number W911NF-12-1-0595. Part of the work was performed while Sushil Jajodia
was a Visiting Researcher at the US Army Research Laboratory.

ix

Contents

Cryptographic Key Management Issues and Challenges
in Cloud Services . 1
Ramaswamy Chandramouli, Michaela Iorga,
and Santosh Chokhani

Costs and Security in Clouds . 31
Yao Chen and Radu Sion

Hardware-Enhanced Security for Cloud Computing . 57
Jakub Szefer and Ruby B. Lee

Cloud Computing Security: What Changes
with Software-Defined Networking? . 77
Maurício Tsugawa, Andréa Matsunaga, and José A.B. Fortes

Proof of Isolation for Cloud Storage . 95
Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing

Selective and Fine-Grained Access to Data in the Cloud . 123
Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela
Samarati

Enabling Collaborative Data Authorization Between
Enterprise Clouds . 149
Meixing Le, Krishna Kant, and Sushil Jajodia

Making Query Execution Over Encrypted Data Practical 171
Ken Smith, M. David Allen, Hongying Lan, and Andrew Sillers

Privacy-Preserving Keyword Search Over Encrypted Data
in Cloud Computing . 189
Wenhai Sun, Wenjing Lou, Y. Thomas Hou, and Hui Li

xi

xii Contents

Towards Data Confidentiality and a Vulnerability Analysis
Framework for Cloud Computing . 213
Kerim Y. Oktay, Mahadevan Gomathisankaran, Murat
Kantarcioglu, Sharad Mehrotra, and Anoop Singhal

Securing Mission-Centric Operations in the Cloud . 239
Massimiliano Albanese, Sushil Jajodia, Ravi Jhawar,
and Vincenzo Piuri

Computational Decoys for Cloud Security . 261
Georgios Kontaxis, Michalis Polychronakis,
and Angelos D. Keromytis

Towards a Data-Centric Approach to Attribution in the Cloud 271
Wenchao Zhou

Software Cruising: A New Technology for Building Concurrent
Software Monitor . 303
Dinghao Wu, Peng Liu, Qiang Zeng, and Donghai Tian

Controllability and Observability of Risk and Resilience
in Cyber-Physical Cloud Systems . 325
Hasan Cam

Cryptographic Key Management Issues
and Challenges in Cloud Services

Ramaswamy Chandramouli, Michaela Iorga, and Santosh Chokhani

Abstract To interact with various services in the cloud and to store the data
generated/processed by those services, several security capabilities are required.
Based on a core set of features in the three common cloud services – Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS),
we identify a set of security capabilities needed to exercise those features and the
cryptographic operations they entail. An analysis of the common state of practice
of the cryptographic operations that provide those security capabilities reveals that
the management of cryptographic keys takes on an additional complexity in cloud
environments compared to enterprise IT environments due to: (a) difference in
ownership (between cloud Consumers and cloud Providers) and (b) control of
infrastructures on which both the Key Management System (KMS) and protected
resources are located. This document identifies the cryptographic key management
challenges in the context of architectural solutions that are commonly deployed to
perform those cryptographic operations.

1 Introduction

Encryption and access control are the two primary means for ensuring data
confidentiality in any IT environment. In situations where encryption is used as a
data confidentiality assurance measure, the management of cryptographic keys is a
critical and challenging security management function, especially in large enterprise

R. Chandramouli (�) • M. Iorga
National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8930,
Gaithersburg, MD 20899, USA
e-mail: mouli@nist.gov; Michaela.Iorga@nist.gov

S. Chokhani
CygnaCom Solutions, 7925 Jones Branch Drive, Suite 5400, McLean, VA 22102, USA
e-mail: SChokhani@cygnacom.com

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__1,
© Springer Science+Business Media New York 2014

1

mailto:mouli@nist.gov
mailto:Michaela.Iorga@nist.gov
mailto:SChokhani@cygnacom.com

2 R. Chandramouli et al.

data centers, due to sheer volume and data distribution (in different physical and
logical storage media), and the consequent number of cryptographic keys. This
function becomes more complex in the case of a cloud environment, where the
physical and logical control of resources (both computing and networking) is split
between cloud actors (e.g. Consumers, Providers and Brokers) (see Sect. 2.2 below
and NIST SP 500-292 for more details).

The objectives of this chapter are to identify:

(a) The cryptographic key management issues that arise due to the distributed
nature of IT resources, as well the distributed nature of their control, the latter
split among multiple cloud actors. Furthermore, the pattern of distribution
varies with the type of service offering – Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS), and

(b) The special challenges involved in deploying cryptographic key management
functions that meet the security requirements of the cloud Consumers,
depending upon the nature of the service and the type of data gener-
ated/processed/stored by the service features.

In this chapter, we address the following topics:

1. Section 1 provides an overview of cryptographic key management;
2. Section 2 provides a summary of the cloud computing concepts, including a

reference architecture (cloud actors, cloud service types and deployment models)
as identified in NIST standards; and

3. Section 3 builds on the previous sections to identify a core set of features for the
three main cloud service types – IaaS, PaaS and SaaS: the security capabilities
(SC) required to exercise those features, architectural solutions available to meet
the security capabilities and the consequent key management challenges.

In order to ensure that cryptographic mechanisms provide the desired security,
the following criteria should be met with regards to their three main components –
Algorithms (and associated modes of operation), Protocols and Implementation:

1. The cryptographic algorithms and associated modes of operation deployed
should have been scrutinized, evaluated, and approved using a review process
that is open and includes a wide range of experts in the field. Examples of such
approved algorithms and modes are found in National Institute of Standards
and Technology’s Federal Information Processing Standards (FIPS) and Special
Publications (SPs), and in the Internet Engineering Task Force (IETF) Request
for Comment (RFC) documents. The specific NIST documents pertaining to
cryptographic algorithms and associated modes of operation are: FIPS 186-3
for Digital Signatures, FIPS 180-4 for Secure Hash, SP 800-38A for modes of
operation and SP 800-56A & SP 800-56B for key establishment.

2. The cryptographic protocols used should have been scrutinized, evaluated, and
approved using a review process that is open and includes a wide range of experts
in the field. IETF protocol specifications for Secure Shell (SSH) and Transport
Layer Security (TLS) are examples that meet these criteria.

Cryptographic Key Management Issues and Challenges in Cloud Services 3

3. The implementation of a cryptographic algorithm or protocol should undergo a
widely recognized and reputable independent testing for verification of confor-
mance to underlying specifications. NIST’s Cryptographic Algorithm Validation
Program (CAVP) and Cryptographic Module Validation Program (CMVP) are
examples of such independent testing programs.

2 Cryptographic Key Management Overview

In this section, we review the two broad categories of cryptographic keys, list the
most commonly used key types, identify the key states and chart the resulting
transition diagram. We then proceed to describe the most important key management
functions (also referred to as key lifecycle operations) and list the generic security
requirements associated with these functions.

2.1 Key Types

Cryptographic keys fall into two broad categories:

1. Secret key: A key that is generally used to (1) perform encryption/decryption
using symmetric cryptographic algorithms; and/or (2) to provide data integrity
using message authentication codes (i.e., Hash based Message Authentication
Code or HMAC) or an encryption mode of operation that also provide data
integrity. A secret key is also called a symmetric key, since the same key is
required for encryption and decryption or for integrity value generation and
integrity verification.

2. Public/Private Key Pair: A pair of mathematically related keys used in asym-
metric cryptography for authentication, digital signature or key establishment. As
the name indicates, the private key is used by the owner of the key pair and kept
secret and should be protected at all times, while the public key can be published
and used be the relying party to complete the protocol or invert the operations
performed with the private key.

From these broad categories one can determine the most commonly used
key types in a cloud computing environment. This is not to say that a cloud
implementation may not have additional types of keys.

1. Public/Private Authentication Key Pair: This key pair is used by one party
(peer, client or server) to authenticate to the other party. Its typical use entails
combining a random challenge with the signer-generated random number and
signing the result for the benefit of the challenger who wishes to authenticate

4 R. Chandramouli et al.

the private-key holder. Examples of usage include client-authenticated Transport
Layer Security (TLS), Virtual Private Network (VPN) authentication, and smart
card-based logon. An authentication key pair is generally used in a network
environment and is generally used for long-term use (e.g., up to 3 years)

2. Public/Private Signature Key Pair: This private key of the key pair is used by
one party to digitally sign a message/data, and the corresponding public key is
used to verify the signature. Examples of the usage of a signature key pair are
signed Secure/Multipart Internet Mail Extensions (S/MIME) messages, signed
electronic documents, and signed code. In some implementations, a key pair may
be used for both authentication and signature functions. A signature key pair is
generally used in a network environment and is generally used for long-term use
(e.g., up to 3 years). It may also be used to generate and verify signatures on
stored data.

3. Public/Private Key Establishment Pair: This key pair is used to securely estab-
lish a key between parties. Examples of the use of a key pair for key establishment
are encrypting the symmetric key for S/MIME payload encryption/decryption
and encrypting the random secret to be sent from a TLS client to a server. It is
recommended that key establishment key pairs be distinct from authentication
and signature key pairs. However, it is recognized that some devices such as web
servers use the same key pair for key establishment and authentication. A key
establishment key pair is traditionally used in a network environment, but some
usage for stored data is also seen and can be envisioned. A key establishment key
pair is generally used for a pre-defined period for encryption (e.g., up to 3 years),
but is used for decryption for as long as the confidentiality of the data needs to
be protected.

4. Symmetric Encryption/Decryption Key: A symmetric key is used to
encrypt and decrypt data or messages. For data-in-transit, a symmetric
encryption/decryption key may have a short life, typically for each message
(e.g., S/MIME message) or for each session (for example a TLS session). For
stored data, the symmetric life of the encryption/decryption key tends to be as
long as the confidentiality of the data needs to be protected.

5. Symmetric Message Authentication Code (MAC) Key: A symmetric key is
used to provide assurance for the integrity of data. There are three techniques
used to provide this assurance: (1) use a symmetric encryption algorithm and
a MAC mode of operation (e.g., CMAC using AES); (2) use a symmetric
encryption algorithm and an authenticated encryption mode of operation (e.g.,
GCM or CCM using AES); and (3) use a hash-based MAC (HMAC). For data-
in-transit, a symmetric MAC key has a short life, typically for a single message
or for a single session (for example a TLS session). For stored data, the life of
a symmetric MAC key tends to be for as long as the data needs to be protected.
Note that when authenticated encryption mode is used, the same key is used for
both the MAC and encryption/decryption, since both objectives are achieved by
invoking a single mode of operation.

Cryptographic Key Management Issues and Challenges in Cloud Services 5

6. Symmetric Key Wrapping Key: A symmetric key is used to encrypt a
symmetric key or an asymmetric private key. A Key Wrapping Key is also called
a Key Encrypting Key.

2.2 Key States

A symmetric key or public/private key pair can undergo the following states. This
is not to say that a key management implementation may not have additional states.
Alternatively, a key management implementation may have a subset of these states.

• Generation: A symmetric key or public/private key pair is generated when
required.

• Activation: A symmetric key or private key is activated when it is required to be
used. A public key is activated when it is made available or on the date indicated
in its associated metadata (e.g., notBefore date in an X.509 public key certificate).

• Deactivation: A symmetric key or private key is deactivated when it is no longer
required for applying cryptographic protection to data. Deactivation of these keys
may be followed by destruction or archival. A public key is not deactivated.
It may expire (e.g., at the notAfter date in an X.509 public key certificate), or
may be suspended (e.g., via certificate revocation list (CRL) [refer RFC 4949] in
X.509 standard) or revoked (e.g., via CRL in X.509 standard).

• Suspension: A key may be suspended from use for a variety of reasons, such
as an unknown status of the key or due to the key owner being temporarily
away. In the case of the public key, suspension of the companion private key is
communicated to the relying parties. This may be communicated as an “On hold”
revocation reason code in a CRL and in an Online Certificate Status Protocol
(OCSP) response

• Expiration: A key may expire due to the end of its crypto period [refer RFC
4949]. In the case of a public key, an expiration date is indicated in the associated
metadata (e.g., notAfter date in X.509 certificates).

• Destruction: A key is destroyed when it is no longer needed.
• Archival: A key may be archived when it is no longer required for normal use,

but may be needed after the key’s cryptoperiod. An example for secret or private
keys is the possible decryption of archived data. An example for public keys is
the verification of archived signed documents.

• Revocation: A revocation is explicitly stated with respect to public keys;
however, the revocation also applies to the corresponding private key. Revocation
information is securely communicated to the relying parties, for example, as
CRLs or OCSP responses, in the case of X.509 public key certificates. Secret
keys are also “revoked”, often by including them on lists, such as a compromised
key list.

The following is the state diagram for the key states (Fig. 1).

6 R. Chandramouli et al.

Generation Activation

Deactivation Suspension Revocation

Archival Destruction

Expiration

Fig. 1 State diagram for the key states

2.3 Key Management Functions

The following are the important key management functions:

• Generate Key: The generation of good-quality keys is critical to security. Keys
for a cryptographic algorithm should be generated in cryptographic modules that
have been approved for the generation of keys for that algorithm.

• Generate Domain Parameters: Discrete Logarithm-based algorithms require
the generation of domain parameters prior to the generation of the keys; the
keys are generated using those domain parameters. The domain parameters for
an algorithm shall be generated in approved cryptographic modules that have
been approved for their generation. Since domain parameters can be common to
a broad community of users, key generation need not entail domain parameter
generation. For example, defining Suite B P-256 curve defines all the domain
parameters for the attendant ECDSA and ECDH algorithms.

• Bind Key and Metadata: A key may have associated data, such as the time
period of use, usage constraints (such as authentication, encryption, and/or key
establishment), domain parameters, and security services for which they are
used, such as source authentication, integrity, and confidentiality protection. This
function provides assurance that the key is associated with the correct metadata.

Cryptographic Key Management Issues and Challenges in Cloud Services 7

• Bind a Key to an Individual: The identifier of the individual or other entity that
owns a key is considered as part of the key’s metadata, but this association is
sufficiently critical to be listed as a distinct function.

• Activate Key: This function transitions a key to the active state. It is often done
in conjunction with key generation.

• Deactivate Key: This function is generally done when a key is no longer needed
for applying cryptographic protection. For example, when a key has expired, or
is replaced by another key.

• Backup Key: A key is backed by the owner, the key management infrastructure
or a third party in order to reconstitute the key when it is accidentally destroyed
or otherwise unavailable. When a private or secret key is backed up by the key
management infrastructure or by a third party, the function is also referred to as
“key escrow”.

• Recover Key: This function is complementary to the key backup function and
is invoked when the key is unavailable for some reason and is required by the
authorized parties. Key backup and recovery generally applies to the symmetric
and private keys.

• Modify Metadata: This function is invoked when metadata bound to a key needs
to change. The renewal of a public key certificate is an example of this function
where the validity period for the public key is changed.

• Rekey: This function is used to replace the existing key with a new key.
Generally, the existing key (the key being replaced) plays a role in authentication
and authorization for replacement.

• Suspend a Key: This function is used to temporarily cease the use of a key. It is
akin to reversible revocation. This function may need to be invoked if the status
of a key is undetermined or if the key owner wishes to temporarily suspend its
use (e.g., for extended leave). For secret keys, this can also be accomplished via
key deactivation. For public keys and the companion private key, this is generally
done using suspension notification of the public key.

• Restore a Key: This function is used to restore a suspended key once its secure
status is ascertained. For secret keys, this can also be accomplished via key
activation. For public keys and the companion private keys, this is generally
done using a revocation notification where the revoked public key entry is deleted
implying the key is valid.

• Revoke a Key: This function is used to inform the relying parties to stop using a
public key. There may be a variety of reasons for this, including the compromise
of companion private key, and that the owner has stopped using the companion
private key.

• Archive a Key: This function is used to store a key in long-term storage after it
has been deactivated, expired, and/or compromised.

• Destroy a Key: This function is used to zeroize a key when it is no longer to be
used.

• Manage TA Store: This function is used by the relying party to determine what
trust anchors to trust for what purpose. A trust anchor is a public key and its
associated metadata that the relying party explicitly trusts and uses to establish

8 R. Chandramouli et al.

trust in other public keys via transitive trust, such as a public-key certification
path that is a series of public key certificates where the digital signature in one
certificate can be used to verify the digital signature on the next certificate.

2.4 Key Management: Generic Security Requirements

The following are general key management security requirements:

1. Parties performing key management functions are properly authenticated and
their authorizations to perform the key management functions for a given key
are properly verified.

2. All key management commands and associated data are protected from spoofing,
i.e., source authentication is performed prior to executing a command.

3. All key management commands and associated data are protected from unde-
tected, unauthorized modifications, i.e., integrity protection is provided.

4. Secret and private keys are protected from unauthorized disclosure.
5. All keys and metadata are protected from spoofing, i.e., source authentication is

performed prior to accessing keys and metadata.
6. All keys and metadata are protected from undetected, unauthorized modifica-

tions, i.e., integrity protection is provided.
7. When cryptography is used as a protection mechanism for any of the above, the

security strength of the cryptographic mechanism used is at least as strong as the
security strength required for the keys being managed,

There are significant challenges to implement these key management security
requirements in cloud computing over unsecure public networks. In the next sections
we review the cloud computing reference architecture and identify, for the three
main cloud service types – IaaS, PaaS and SaaS, a core set of features, the security
capabilities (SC) required to exercise those features, architectural solutions available
to meet the security capabilities and the consequent key management challenges.

3 Cloud Computing Environment: Evolution
and State of Practice

3.1 Three Generations of Internet

The evolution of the internet can be divided into three generations: in the 1970s
the first generation was marked by expensive mainframe computers accessed from
terminals; the second generation was born in the late 1980s and early 1990s, and was
identified by the explosion of personal computers with Graphical User Interfaces
(GUIs); the first decade of the twenty-first century brought the third generation,
defined by mobile computing, the “internet of things” and cloud computing.

Cryptographic Key Management Issues and Challenges in Cloud Services 9

In 1997, Professor Ramnath Chellappa of Emory University, defined cloud
computing for the first time while a faculty member at the University of South
California, as an important new “computing paradigm where the boundaries of
computing will be determined by economic rationale rather than technical limits
alone.” Even though the international IT literature and media have come forward
since then with a large number of definitions, models and architectures for cloud
computing, autonomic and utility computing were the foundations of what the
community commonly referred to as “cloud computing”. In the early 2000s,
companies started rapidly adopting this concept upon the realization that cloud
computing could benefit both the Providers as well as the Consumers of services.
Businesses started delivering computing functionality via the Internet, enterprise-
level applications, web-based retail services, document-sharing capabilities and
fully-hosted IT platforms, to mention only a few cloud computing use cases
of the 2000s. The latest widespread adoption of virtualization and of service-
oriented architecture (SOA) promulgated cloud computing as a fundamental and
increasingly important part of any delivery and critical-mission strategy, enabling
existing and new products and services to be offered and consumed more efficiently,
conveniently and securely. Not surprisingly, cloud computing became one of the
hottest trends in the IT armory, with a unique and complementary set of properties,
such as elasticity, resiliency, rapid provisioning, and multi-tenancy.

3.2 Cloud Computing Definition (by NIST)

Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal
management efforts or service provider interaction. Enterprises can use these
resources to develop, host and run services and applications on demand in a
flexible manner in any devices, anytime, and anywhere. According to the U.S.
National Institute of Standards and Technology’s (NIST) definition published in the
NIST Special Publication SP 800-145, “cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction.” This definition is widely accepted as a valuable contribution
toward providing a clear understanding of cloud computing technologies and cloud
services and it has been submitted as the U.S. contribution for an International
standardization.1

The NIST definition also provides a unifying view of five essential characteristics
that all cloud services exhibit: on-demand self-service, broad network access,

1http://www.nist.gov/itl/csd/cloud-102511.cfm

http://www.nist.gov/itl/csd/cloud-102511.cfm

10 R. Chandramouli et al.

resource pooling, rapid elasticity, and measured service. Furthermore, NIST iden-
tifies a simple and unambiguous taxonomy of three “service models” available to
cloud Consumers (Infrastructure-as-a-Service (IaaS), Platform-as-a Service (PaaS),
Software-as-a-Service (SaaS)) and four “cloud deployment modes” (Public, Private,
Community and Hybrid) that together categorize ways to deliver cloud services.
Since the cloud service model is an important architectural factor when discussing
key managements aspects in a cloud environment, we are reproducing below the
definitions for the service models provided by NIST in SP 800-145, “The NIST
definition of Cloud Computing”:

1. Infrastructure as a Service (IaaS) – The capability provided to the Consumer
is to provision processing, storage, networks, and other fundamental computing
resources where the Consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The Consumer does not manage
or control the underlying cloud infrastructure, but has control over operating
systems, storage, deployed applications, and possibly limited control of select
networking components (e.g., host firewalls).

2. Platform as a Service (PaaS) – The capability provided to the Consumer is to
deploy Consumer-created or acquired applications onto the cloud infrastructure
that are created using programming languages and tools supported by the
Provider. The Consumer does not manage or control the underlying cloud
infrastructure, including network, servers, operating systems, or storage, but
has control over the deployed applications and possibly the application-hosting
environment configurations.

3. Software as a Service (SaaS) – The capability provided to the Consumer is to use
the Provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through a thin client interface, such
as a web browser (e.g., web-based email). The Consumer does not manage or
control the underlying cloud infrastructure, including network, servers, operating
systems, storage, or even individual application capabilities, with the possible
exception of limited user-specific application-configuration settings.

IaaS allows cloud Consumers to run any operating systems and applications of
their choice on the hardware and resource abstraction layer (hypervisors) furnished
by the cloud Provider. A Consumer’s operating systems and applications can be
migrated to the cloud Provider’s hardware, potentially replacing a company’s data
center infrastructure.

PaaS allows Consumers to create their own cloud applications. Basically, the
cloud Provider renders a virtualized environment and a set of tools to allow the
creation of new web applications. The Cloud Provider also furnishes the hardware,
operating systems and commonly used system software and applications, such as
DBMS, Web Server, etc.

SaaS allows cloud Consumers to run online applications. Off-the-shelf applica-
tions are accessed over the Internet. The cloud Provider owns the applications, and
the Consumers are authorized to use them in accordance with a Service Agreement
signed between parties.

Cryptographic Key Management Issues and Challenges in Cloud Services 11

Cloud computing provides a convenient, on-demand way to access a shared
pool of configurable resources (e.g., networks, servers, storage, applications, and
services), which enables users to develop, host and run services and applications
on demand in a flexible manner in any devices, anytime, and anywhere. Cloud
services are those services that are expressed, delivered and consumed over a
public network, a private network or in some combination (community or hybrid).
These services are usually delivered in one of the following service categories
identified by NIST: IaaS, PaaS and SaaS. Cloud Provider and Broker may also
identify other Categories of services (such as Network-as-a-Service, Storage-as-
a-Service, carrier-as-a-Service) that are practical components already embedded
in the service models identified by NIST, and are not stand-alone service models
that identify particular cloud architectures. Some cloud Providers might provide
abstracted hardware and software resources that may be offered as a service. This
allows customers and partners to develop and deploy new applications that can be
configured and used remotely. Leveraging cloud services that provide opportunities
to provision resources elastically enables enterprises to launch or change their
business quickly and easily as needed.

3.3 Cloud Computing Reference Architecture (from NIST)

In the Special Publication SP 500-292, NIST has published the NIST Cloud
Computing Reference Architecture2 (RA). This architecture is a logical extension
of the NIST cloud computing definition. It is a generic high-level conceptual model
that is an effective tool for discussing the requirements, structures, and operations
of cloud computing. The model is not tied to any specific vendor products, services
or reference implementation, nor does it provide prescriptive solutions. The RA
defines a set of cloud Actors and their activities and functions that can be used
in the process of orchestrating a cloud Ecosystem. The Cloud Computing RA
relates to a companion cloud computing taxonomy and contains a set of views and
descriptions that are the basis for discussing the characteristics, uses and standards
for cloud computing. The Actor-based model is intended to serve the expectations
of the stakeholders by allowing them to understand the overall view of roles and
responsibilities in order to assess and manage the risk by implementing adequate
security controls.

The NIST Reference Architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
architecture of a specific cloud computing system; instead, it is a tool for describing,
discussing, and developing a system-specific architecture using a common frame-
work of reference.

2http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/
ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

12 R. Chandramouli et al.

As shown in Fig. 2 this architecture outlines the five major cloud Actors;
Consumer, Provider, Broker, Carrier and Auditor.

Cloud
Consumer

Cloud Carrier

Cross Cutting Concerns: Security, Privacy, etc

Cloud Provider Cloud
Broker

Cloud
Auditor

Security
Audit

Service Layer Cloud Service
Management

Service
Intermediation

Service
Aggregation

Service
Arbitrage

Business
Support

Provisioning/
Configuration

Portability/
Interoperability

Cloud Orchestration

SaaS

PaaS

IaaS

Resource Abstraction and Control
Layer

Physical Resource Layer

Hardware

Facility

Privacy Impact
Audit

Performance
Audit

Fig. 2 NIST cloud computing security reference architecture approach (Courtesy of NIST, SP
500-292)

Each cloud Actor defined by the NIST RA is an entity (a person or an
organization) that participates in a transaction or process and/or performs tasks in
cloud computing. The definitions of the cloud Actors introduced by NIST in SP
500-292, NIST cloud Computing Reference Architecture, are reproduced below in
Table 1.

Table 1 Cloud actor definitions (Courtesy of NIST, SP 500-292)

Actor Definition

Cloud consumer A person or organization that maintains a business relationship with, and uses
service from, Cloud Providers

Cloud provider A person, organization, or entity responsible for making a service available to
interested parties

Cloud auditor A party that can conduct an independent assessment of cloud services,
information system operations, performance and security of the cloud
implementation

Cloud broker An entity that manages the use, performance and delivery of cloud services,
and negotiates relationships between Cloud Providers and Cloud
Consumers

Cloud carrier An intermediary that provides connectivity and transport of cloud services
from Cloud Providers to Cloud Consumers

Cryptographic Key Management Issues and Challenges in Cloud Services 13

In our latest work (draft documents and white papers), NIST identifies two types
of cloud Providers:

1. Primary Provider and
2. Intermediary Provider,

and two types of cloud Brokers:

1. Business Broker and
2. Technical Broker.

Figure 3, below, graphically depicts these two types of Providers and the two
types of Brokers. It is important to note that, in particular, cloud environments where
an Intermediary Provider partners with a Primary Provider in offering cloud ser-
vices, the key management functions that fall under the Provider’s responsibilities
might need to be divided among the two Providers, depending on the architectural
details of the offered cloud service. From the cloud Consumer’s perspective this
segregation is not visible.

A Primary Provider offers services hosted on an infrastructure that it owns. It may
make these services available to Consumers through a third party (such as a Broker
or Intermediary Provider), but the defining characteristic of a Primary Provider is
that it does not obtain the sources of its service offerings from other Providers.

An Intermediary Provider has the capability to interact with other cloud Providers
without offering visibility or transparency into the Primary Provider(s). An Interme-
diary Provider uses services offered by a Primary Provider as invisible components
of its own service, which it presents to the customer as an integrated offering. From
a security perspective, all security services and components required of a Primary
Provider are also required of an Intermediary Provider.

A Business Broker only provides business and relationship services, and does
not have any contact with the cloud Consumer’s data, operations, or artifacts (e.g.,
images, volumes, firewalls) in the cloud and, therefore, has no responsibilities in
implementing any key management functions, regardless of the cloud architecture.
Conversely, a Technical Broker does interact with a Consumer’s assets; the Tech-
nical Broker aggregates services from multiple cloud Providers and adds a layer
of technical functionality by addressing single-point-of-entry and interoperability
issues.

There are two key defining features of a cloud Technical Broker that are distinct
from an Intermediary Provider:

1. The ability to provide a single consistent interface (for business or technical
purposes) to multiple differing Providers, and

2. The transparent visibility that the Broker allows into who is providing the
services in the background – as opposed to Intermediary Providers that do not
offer such transparency.

Since the Technical Broker allows for this transparent visibility, the Consumer
is aware of which key management functions are implemented by each Actor. This
case is different from the case in which an Intermediary Provider is involved, since

14 R. Chandramouli et al.

Fig. 3 Composite cloud ecosystem security architecture (Courtesy of NIST)

the Intermediary Provider is opaque, and the Consumer is unaware of how the
key management functions are divided, when applicable, between the Intermediary
Provider and the Primary Provider.

The NIST RA diagram in Fig. 2 also depicts the three service models discussed
earlier: IaaS, PaaS and SaaS in the “inverted L” representations, highlighting the
stackable approach of building cloud service. Additionally, the NIST RA diagram
identifies, for each cloud Actor, their general activities in a cloud ecosystem. This
Reference Architecture is intended to facilitate the understanding of the operational
intricacies in cloud computing. It does not represent the system architecture of a
specific cloud computing system; instead, it is a tool for describing, discussing, and
developing a system-specific architecture using a common framework of reference
that we plan to leverage in our later discussion of key management issues in a cloud
environment.

Cloud computing provides enterprises with significant cost savings, both in terms
of capital expenses (CAPEX) and operational expenses (OPEX), and allows them
to leverage leading-edge technologies to meet their information processing needs.
In a cloud environment, security and privacy are a cross-cutting concern for all
cloud Actors, since both touch upon all layers of the cloud computing Reference
Architecture and impact many parts of a cloud service. Therefore, the security
management of the resources associated with cloud services is a critical aspect of
cloud computing. In a cloud environment, there are security threats and security
requirements that differ for different cloud deployment models, and the necessary
mitigations against such threats and cloud Actor responsibilities for implementing
security controls depend upon the service model chosen and the service categories
elected. Many of the security threats can be mitigated with the application of
traditional security processes and mechanisms, while others require cloud-specific
solutions. Since each layer of the cloud computing Reference Architecture may

Cryptographic Key Management Issues and Challenges in Cloud Services 15

have different security vulnerabilities and may be exposed to different threats, the
architecture of a cloud-enabled service directly impacts its security posture and the
system’s key management aspects.

For each service model, Fig. 4 below uses a building-block approach to depict
a graphical representation of the cloud Consumer’s visibility and accessibility to
the “Security and Integration” layer that hosts the key management in a cloud
environment. As the figure shows, the cloud Consumer has high visibility into
the “Security & Integration” layer and has control over the key management in
a IaaS model, while the cloud Providers implement only the infrastructure-level
security functions (which are always opaque to Consumers). The Consumer has
limited visibility and limited key management control in a PaaS model, since the
cloud Provider implements the security functions in all lower layers except the
“Applications” layer. The cloud Consumer loses the visibility and the control in
a SaaS model, and in general, all key management functions are opaque to the cloud
Consumer, since the cloud Provider implements all security functions.

Infrastructure
(as a Service)

Platform
(as a Service)

Y
o

u
 m

an
ag

e

Y
o

u
 m

an
ag

e

Applications

Runtimes

Security & Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Applications

Runtimes

Security & Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Applications

Runtimes

Security & Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

M
an

ag
ed

 b
y ven

d
o

r

M
an

ag
ed

 b
y ven

d
o

r

M
an

ag
ed

 b
y ven

d
o

r
Software

(as a Service)

Fig. 4 Cloud service models and data protection (Courtesy of CIO Research Council [CRC])

In the following Section, we will discuss, for each service model, the Key
Management challenges encountered by cloud Actors in different use cases.

4 Cryptographic Key Management Challenges in the Cloud

As stated in Sect. 2, the secure management of the resources associated with cloud
services is a critical aspect of cloud computing. Cryptographic operations form
one of the main tasks of secure management. Hence, while cloud services provide
ubiquitous computing, elastic capabilities and self-configurable resources at lower
costs, they also entail performing several cryptographic operations (from a cloud
Consumer perspective) for the following:

16 R. Chandramouli et al.

• Secure Interaction of the Cloud Consumer with various services and
• Secure Storage of data generated/processed by those services.

The key management system (KMS) required to support cryptographic oper-
ations for the above functions can be complex, due to differences in ownership
and control of underlying infrastructures on which the KMS and the protected
resources are located. For example, though the ownership of data in cloud services
rests with the cloud Consumer, the data is physically resident on storage resources
controlled by the cloud Provider, and in many instances, the KMS required for
managing the cryptographic keys needed to protect that data have to be run on the
computing resources provided by the cloud Provider. This presents challenges to
a cloud Consumer seeking to obtain the necessary security assurance from those
cryptographic operations.

The driver for the set of cryptographic operations performed in the main cloud
service models (IaaS, PaaS and SaaS) depends upon the features that constitute those
services. Though there are slight variations in the feature set among different cloud
Providers, it is possible to identify a core set of features. Based on these core set
of features, we identify the security capabilities associated with the exercise of the
features, and from the state of practices using architectural solutions for achieving
those security capabilities, we derive the key management challenges for IaaS, PaaS
and SaaS service types in Sects. 3.1, 3.2, and 3.3, respectively. It must be noted
upfront that in all architectural solutions where cryptographic keys are stored in the
cloud, there is a limit to the degree of security assurance that the cloud Consumer
can expect to get, due to the fact that the logical and physical organization of the
storage resources are entirely under the control of the cloud Provider.

4.1 Challenges in Cryptographic Operations and Key
Management for IaaS

In the IaaS cloud type, the Consumer deploys its own computing resources in
the form of virtual machines (VMs) or leases them from the cloud Provider. The
leasing option involves checking out pre-built images offered by an IaaS cloud
Provider. The VM images that are checked out must be authenticated to ensure
that they are from authorized sources and have not been tampered with. After
a VM is configured, it has to be launched in the cloud Provider’s infrastructure
to become a running VM instance. The operation of launching the VM and the
subsequent lifecycle operations on the VM (such as Stop, Pause, Restart, Kill etc)
are performed by the IaaS cloud Consumer through access to the management
interface of the Hypervisor. Additionally, during operations or the use of cloud
services, the IaaS cloud Consumer has to interact with running VM instances
in a secure manner. These three operations – checking out a VM, performing
lifecycle operations (including launching) on a VM instance and secure interaction
with it – are performed by designated service-level administrators of the IaaS

Cryptographic Key Management Issues and Challenges in Cloud Services 17

cloud Consumer. IaaS cloud service security capabilities (SC) that enable these
operations are:

• IaaS-SC1: The ability to authenticate pre-defined VM Image Templates made
available by a cloud Provider for building functional, customized VM instances
that meet a cloud Consumer’s needs,

• IaaS-SC2: The ability to authenticate the API calls sent by the cloud Consumer
to the VM Management interface of the cloud Provider’s Hypervisor environ-
ment, and

• IaaS-SC3: The ability to secure the communication while performing adminis-
trative operations on VM instances

For each of the three security capabilities identified above, possible architectural
solutions (AS) are presented below that are based on known secure functions or
protocols. The cryptographic key management challenges associated with these AS
are also described and discussed.

IaaS-SC1 The ability to authenticate pre-defined VM Image Templates made
available by a cloud Provider for building functional, customized VM instances that
meet a cloud Consumer’s needs (Server Authentication Mechanism).

Architectural Solution:
When leasing VMs from IaaS Providers, cloud Consumers are concerned that the
VM image templates being checked out might not be authentic. To mitigate this
concern, the templates can be digitally signed by the cloud Provider. The private
key of a public/private key pair that is used to sign the VM image templates should
be securely stored by the Provider and protected while in use (e.g., using FIPS 140-
2 validated cryptographic module). The Provider needs to make the corresponding
public key available to the Consumer in an authenticated manner (e.g., using an out-
of-band means or using a public key certificate). Alternative means of assuring the
integrity of the VM are: (a) the use of a cryptographic hash function (secure hash
function), such as SHA-256 computed over the VM code, which Consumers should
re-compute and verify against the value obtained using an out-of-band means; (b)
the use of cryptographic message authentication code (MAC) mechanisms (i.e.,
HMAC or a block-cipher-based MAC) using a cryptographic algorithm and a secret
shared by the Provider and the Consumers.

Key Management Challenges:
The authentication of the VM templates using one of the cryptographic techniques
referred above (i.e., digital signature, cryptographic hash function, or message
authentication code) entails the bootstrapping problem and hence, requires a com-
prehensive security analysis, rather than just an examination of the key management
challenge. Appendix provides this analysis for the three possible cryptographic
techniques for achieving IaaS-SC1 and a possible solution.

IaaS-SC2 The ability to authenticate the API calls sent by the cloud Consumer to
the VM Management interface of the cloud Provider’s Hypervisor environment.

18 R. Chandramouli et al.

Architectural Solution:
Although the responsibility for configuring the VMs lies with a cloud Consumer,
an IaaS cloud Provider can implement functionality whereby the VM Management
Interface of the Hypervisor only accepts and executes authenticated API calls. Cloud
Consumers need to generate or possess a public/private key pair that will be used for
signing the calls submitted to the VM Management interface. The public key needs
to be bound to the Consumer’s identity in a public key certificate signed by a trusted
authority. The certificate is then made available to the VM Management Interface
of the Hypervisor to verify the signature of the calls submitted by the Consumer to
the VM instance. An alternative approach is to provide the capability for the cloud
Consumer to set up a secure session with the VM Management interface using either
SSH (refer IaaS-SC3) or TLS (refer IaaS-SC4).

Key Management Challenge:
Cloud Consumers need to secure the private key of the public/private key pair that
is used to sign the VM Management commands on their system (both at rest and
while in use).

IaaS-SC3 The ability to secure the communication while performing administra-
tive operations on VM instances.

Architectural Solution:
The service-level administrators of the IaaS Consumer need root/administrator
access to running VM instances deployed or leased by that Consumer. A typical
mechanism deployed to secure this access is Secure Shell (SSH) that provides a
framework for public/private (asymmetric) keys or password-based client authen-
tication techniques. A public/private key technique requires the cloud Consumer
to generate a public/private key pair and then associate the public key with the
Consumer’s account in the VM instance. The task of a VM recognizing the
Consumer as the owner of the companion private key is accomplished by appending
the public key to the authorized keys file in the VM instance that can support
SSH login through protocols such as File Transfer Protocol (ftp), Secure Copy
Protocol (scp), or console commands. Thus, SSH can be used to enable the VM
instance to authenticate the Consumer using cryptographic means. Further details
of the SSH protocol are described in Internet RFC 4253. This strong cryptographic
authentication prevents anonymous connection attempts to the VM instance, as well
as preventing authentication attacks (such as password guessing). Moreover, the
SSH protocol permits asymmetric keys to be used to perform an authenticated
ephemeral Diffie-Hellman (DH) key establishment. The symmetric session keys
calculated during this process are used to encrypt the payload and to generate
hash-based message authentication codes, thus providing both confidentiality and
integrity security services. When SSH is used, not only is the administrator
authenticated, but all the commands, responses, and payload are protected in
both directions (Consumer←→ VM) from eavesdropping and against undetected
modifications, and are cryptographically authenticated.

Cryptographic Key Management Issues and Challenges in Cloud Services 19

Key Management Challenges:
Cloud Consumers need to secure the private key of the public/private key pair that
is used to authenticate themselves, using the best enterprise security mechanisms. It
is important to note that, the Diffie-Hellman keys and the derived session keys are
ephemeral and generated or calculated on-the-fly. Thus, these keys do not require
persistent storage, and hence, their key management is not an issue.

After the service-level administrator of the cloud Consumer authenticates pre-
defined VM Images provided by the cloud Provider and checks them out (using
capability IaaS-SC1), customizes them to its requirements, launches them securely
in the hypervisor environment (using IaaS-SC2) of cloud Provider and performs
configuration maintenance through secure interaction with the launched VM
instances (using capability IaaS-SC3), the application-level administrator of the
cloud Consumer installs and configures various servers (web servers, Database
Management servers, etc.), application execution environments (i.e., Java VMs,
Java run time modules, etc.) and application executables (and in some instances,
source codes, as well) on those VM instances. Although the application-level
administrators do not configure VM instances (such as allocation/resizing of virtual
memory, CPU cores or virtual disks, etc.), they do have the need to setup secure
sessions with VM instances prior to being authenticated. Hence, in most practical
situations, the same service-level administrators of the cloud Consumer play the
role of application-level administrators as well. The administrators use the same
SSH technique and keys for secure application-level administration.

After applications are up and running on their leased VMs, the application users
of an IaaS cloud Consumer would like to interact with these applications securely
(through setting up secure sessions and strong authentication) and exercise the
various application features – depending upon the set of assigned permissions or
by assuming their assigned roles (which provide the permissions). Finally, there is
the need for Data Storage services for all categories (service-level administrators,
application-level administrators and application users) of IaaS Consumers. The
data storage services required may span different types of data, such as: (a) Static
Data – application source codes, Reference data used by applications, Archived data
and Logs, and (b) Application data – those generated and used by applications.
The application data in turn could be either Structured (e.g., Database data) or
Unstructured (e.g., files from social feeds).

The challenges in the secure interaction of the application users (as opposed to
application-level administrators) of IaaS cloud Consumers with IaaS cloud services
(both main services, such as executing the applications on VM instances, as well as
auxiliary services such as data storage) are:

• IaaS-SC4: The ability to secure the communication with application instances
running on VM instances for application users during cloud-service usage,

• IaaS-SC5: The ability to securely store static application support data securely
(data not directly processed by applications),

20 R. Chandramouli et al.

• IaaS-SC6: The ability to securely store application data in a structured form (e.g.,
relational form) securely using a Database Management System (DBMS),

• IaaS-SC7: The ability to securely store application data that is unstructured, and

IaaS-SC4 The ability to secure the communication with application instances
running on VM instances for application users during cloud service usage.

Architectural Solution:
Application users (clients) generally interact with services by setting up a secure
session (which can provide both confidentiality and integrity) with application
(service) instances (e.g., Web server or DBMS server instances). The most common
technology employed is the Transport Layer Security (TLS) protocol. TLS, just
like SSH described earlier, can be used to enable the service instance and client
to authenticate each other using a cryptographic means (as described in Internet
RFC 5246), as well as to set up secure session keys for encrypting/decrypting and
for generating message authentication codes.

Key Management Challenges:
The secure session requires the presence of an asymmetric key pair (private and
public keys) for a service instance and an optional key pair on the client side, as
well. The client-side private key can be managed by an enterprise key management
system, and the server-side private key has to be managed by a key management
system run by the IaaS cloud Provider.

IaaS-SC5 The ability to securely store static application support data securely.

Architectural Solution:
To support applications running on leased VM instances, IaaS cloud Consumers
need secure storage services to store relatively static data such as application source
codes, reference data used by applications, preferred VM Images and archived
data and Logs. These types of data are different from data generated, processed
and stored directly by the application. To store the former type of data, the cloud
Providers offer a file-storage service.

Key Management Challenge:
The data that is not processed by or written to by applications can be encrypted at
the cloud Consumer site before being uploaded to the cloud Providers file storage
service. Hence, encryption keys (generally, symmetric keys) needed for encrypting
the data at the cloud Consumer site and are under its administrative control and can
thus be secured using enterprise key management solutions.

IaaS-SC6 The ability to securely store application data in a structured form
securely: To store structured data generated by applications running on its VM
instances, the IaaS cloud Consumer needs to subscribe to a Database service
(generally a relational service offered by the Provider as an adjunct to its IaaS
offering). The cloud Consumer subscribing to this service is generally provided with
a DBMS instance with the ability to custom configure the instance to suit its business

Cryptographic Key Management Issues and Challenges in Cloud Services 21

and security needs. The options available to provide confidentiality protection for
data managed by the DBMS instance and the associated key management challenge
are described below:

Architectural Solution-TDE: (Transparent/External Encryption):
Use the native encryption function that is provided as a feature within the DBMS
engine or use a third party tool. This feature is called Transparent Data Encryption
(TDE) and is a technique similar to storage-level encryption (the encryption engine
operates at the I/O level and encrypts data just prior to being written to disk).
The whole database is protected with a single Database Encryption Key (DEK)
that is itself protected by more complex means, including the possibility of using a
Hardware Security Module (HSM). Since TDE performs all cryptographic operation
at the I/O level within the database system, there is no need to modify the application
logic or the database schema.

Key Management Challenge:
Since the IaaS cloud Consumer has administrative control of the subscribed DBMS
instance, it has control over the DEK as well. Since encryption is taking place at the
I/O level, the DEK has to reside close to the storage resources designated for storage
of the database data, and hence, the cloud Consumer has no other option other than
storing the DEK in the same cloud where the DBMS instance is running. Although
there are TDE implementations that offer column and table-level granularity for
encryption, the most common usage is for storage-level encryption, and hence, the
implementation cannot be configured to provide different set of encryption keys for
different users based on their permission set (or assigned role).

Architectural Solution-ULE: (Database Level Encryption or User-Level
Encryption)
Under this feature, users can choose to encrypt data at the column level, table level
or even a set of data files corresponding to multiple tables or indexes.

Key Management Challenge:
This solution requires the use of a different encryption key for different database
objects. An additional service is required (e.g., by a Security Server) that will map
the set of session permissions of the user (based on the roles assumed) to the set of
keys, and then make a call to a KMS to retrieve the required set of keys from key
storage. For better security, the security server, the KMS and (persistent) key storage
should be run in a cloud that is different than the DBMS instance or should be run
on-premise by the cloud Consumer. The security server and KMS perform the role-
to-key mapping and key retrieval functions, respectively, based on the authenticated
credentials of the DBMS user. However, during a user’s session (for key usage),
the keys remain in a cache of the memory space created for the user session in the
same cloud as the DBMS instance. The added challenge of retrieving the key from
the KMS and providing it securely to the application running in the cloud Provider
space also needs to be dealt with. One can argue that once the secure session with
the DBMS application in the cloud is established, this security challenge is trivial.
Alternatively, the cloud Consumer can run the security server and the KMS in the

22 R. Chandramouli et al.

same cloud as the DBMS application. This latter approach leaves the sensitive data
vulnerable to access by the cloud Provider Administrators unless additional security
measures are taken.

IaaS-SC7 The ability to store unstructured application data securely: This oper-
ation requires storage-level encryption similar to Transparent/External encryption
(Architectural Solution-1: (Transparent/External Encryption), and hence, the
same key management challenges apply.

4.2 Challenges in Cryptographic Operations and Key
Management for PaaS

The objective of a Platform as a Service (PaaS) offering is to provide a computa-
tional platform and the necessary set of application development tools to Consumers
for developing or deploying applications. Although the underlying OS platform on
which the development tools are hosted is known to the Consumer, the Consumer
does not have control over its configuration functions and thus the resulting
operating environment. Consumers interact with these tools (and associated data,
such as development libraries) to develop custom applications. Consumers may also
need a storage infrastructure to store both supporting data and application data for
testing the application functionality. PaaS cloud service security capabilities (SC)
that enable these operations are:

• PaaS-SC1: The ability to set up secure interaction with deployed applications
and/or development tool instances,

• PaaS-SC2: The ability to securely store static data (data not directly processed
by applications),

• PaaS-SC3: The ability to securely store application data in a structured form
(e.g., relational form) using a Database Management System (DBMS), and

• PaaS-SC4: The ability to securely store application data that is unstructured.

The operations involved in exercising the above capabilities (PaaS-SC1 through
PaaS-SC4) are identical to the operations involved in exercising capabilities IaaS-
SC4 through IaaS-SC7, respectively and hence, the same cryptographic key man-
agement challenges apply.

4.3 Challenges in Cryptographic Operations and Key
Management for SaaS

SaaS offerings provide access to applications hosted by the cloud Provider. An SaaS
cloud Consumer would like to interact with these application instances securely
(through setting up secure sessions and strong authentication) and exercise the

Cryptographic Key Management Issues and Challenges in Cloud Services 23

various application features, depending upon the set of assigned permissions or
by assuming their assigned roles (which provide the permissions). In addition,
some SaaS Consumers would also like to store the data generated/processed by
those applications in an encrypted form because of the following reasons: (a) to
prevent exposure of their corporate data, due to loss of the media used by cloud
Providers; and (b) surreptitious viewing of their data by an SaaS co-tenant or by
a cloud Provider administrator. Though the former feature (secure interaction with
application) is provided by the SaaS Providers, the second feature (storing data in
an encrypted form) currently has to be provided entirely by the SaaS Consumer. The
typical set of security capabilities (whether provided by an SaaS service or not) are:

• SaaS-SC1: The ability to set up secure interaction with an application, and
• SaaS-SC2: The ability to store application data (structured or unstructured) in an

encrypted form.

The operations involved in exercising the SaaS-SC1 capability is identical to
the operations involved in exercising the IaaS-SC4 capability, and hence, the same
cryptographic key management challenges apply.

SaaS-SC2 The ability to store application data (structured or unstructured) in an
encrypted form.

There are two operational scenarios here. If all fields in the database need to be
encrypted, then the encryption capabilities have to reside with the cloud Provider
because of the sheer scale of operation (see Architectural Solution – DVE below for
description). On the other hand, if each cloud Consumer wants selective encryption
of some subset of fields, and since that subset varies with each Customer, all
encryption operations has to take place at the client (cloud Consumer) end (see
Architectural Solution – GTE). The key management challenges for each of the
two options are discussed below after a brief description of associated architectural
solution.

Architectural Solution-DVE (Encryption of Entire Database):
For efficient encryption and storage of application data, SaaS cloud Providers divide
the physical storage resources into logical storage chunks called disk volumes and
assign different encryption keys over sets of disk volumes (e.g., assign an encryption
key for two or three disk volumes).

Key Management Challenge:
Since all the encryption keys are under the control of the SaaS cloud Provider,
this architectural solution does not provide assurance to the Consumer against
the insider3 threat unless additional measures are taken. Secondly, it is possible
that data belonging to different Consumers reside on a single disk volume and is
protected by a common encryption key, providing no cryptographic separation of
the data belonging to different cloud Consumers. Furthermore, the sheer volume

3That is, cloud Provider Administrator.

24 R. Chandramouli et al.

of data stored in large SaaS cloud offerings requires a large number of keys, thus
necessitating the need for the management of hundreds of symmetric encryption
keys, possibly using multiple key management servers. If the key management
function is carried out using an HSM, then it may require the creation and
maintenance of multiple HSM partitions.

Architectural Solution-GTE (Selective Encryption of Database Fields):
For selective encryption of certain set of fields chosen by the Consumer (the
selection of the set based on each Consumer’s business requirements), an encryption
gateway (generally running as an appliance) is usually employed inside the cloud
Consumer’s enterprise network. Architecturally, the gateway is located between
the SaaS client application and SaaS cloud application (hosted by cloud SaaS
Provider) and acts as a reverse proxy server that monitors all incoming and outgoing
application traffic (e.g., HTTP, SMTP, SOAP and REST). The outgoing payload
in this context will usually be the data that needs to be sent to the SaaS cloud
application for storage. The gateway being configured with rules for encrypting
different data items, encrypts or tokenizes the data in real time and forwards the
modified data to the SaaS cloud application. Similarly, encrypted or tokenized
data retrieved and returned by the SaaS cloud application is converted again, in
real time, into clear text prior to being displayed by the SaaS client application.
This encryption scheme thus requires no change either to the SaaS cloud Provider
application or to the SaaS cloud Consumer’s client application. Furthermore, all
application functionality can be exercised normally since the encryption/decryption
process performed by the encryption gateway is Format and Function-Preserving.
Thus, the encryption gateway is the solution adopted under the following scenario:

• The SaaS cloud Consumer needs selective encryption of certain fields and hence
all the processing (from the application functionality point of view) as well as
encryption of those fields occurs at the Consumer side and the DBMS instance
at the cloud is used just for storage (as opposed to computational processing) as
far as those fields are concerned.

• The values in fields marked for encryption thus are in encrypted form at all times
in the cloud (both during application processing in the cloud and storage in the
cloud)

• Data in clear text is visible only to authorized clients using SaaS client applica-
tion to interact with the SaaS cloud application through the encryption gateway

Key Management Challenge:
The encryption gateway may use a single key or different cryptographic keys for
encrypting/decrypting different selected fields of the application. Irrespective of the
number of cryptographic keys used, since the encryption gateway resides within
the enterprise network perimeter, all cryptographic keys are fully under the control
of the SaaS cloud Consumer and hence protected using in-house enterprise key
management policies and practices.

Cryptographic Key Management Issues and Challenges in Cloud Services 25

Appendix A: Security Analysis of Cryptographic Techniques
for Authenticating VM Templates in the Cloud

When leasing VMs from cloud Providers, cloud Consumers are concerned that the
VM templates being checked out might not be authentic. To mitigate this concern,
the following are some possible techniques:

1. A Digital Signature on the VM template,
2. The use of a Cryptographic Hash function,
3. The use of a Keyed Message Authentication Code, or
4. The use of cloud Provider Environment Discretionary Access Control.

Each of these techniques is described and analyzed below. Note that there are
numerous variations for each technique and several other techniques, but these
techniques were chosen to illustrate how to go about performing security analysis.
Also note that, based on the cloud computing paradigm, it is assumed that the cloud
Consumer will not download the VM template for authentication in the Consumer’s
Enterprise environment. Rather, the authentication will be performed in the Provider
environment in which the VM is going to execute.

A.1 VM Template Authentication Using Digital Signature

As Fig. A.1, illustrates, the cloud Provider signs the VM template using the cloud
Provider’s private key once the VM template has been created. The signing function
needs to be performed only once when the VM template is created.

Every time that a cloud Consumer checks out a VM template, he can verify the
digital signature on the VM template using the public key of the cloud Provider. The
cloud Consumer supplies the public key to the verification engine as illustrated in
Fig. A.1.

This approach has the advantage that the cloud Provider is able to create and
modify multiple VM templates, and all cloud Consumers can verify the source
and integrity of the VM template via a digital signature verification. It also has
the advantage of simplified key management. All that is required are the following:
(a) the cloud Provider needs to create a single public/private signature key pair and
protect the private key from unauthorized use and from unauthorized disclosure, (b)
the cloud Provider needs to provide the public key in a trusted manner1 to each
cloud Consumer; and (c) the cloud Consumer needs to protect the public key from
undetected, unauthorized modification.

The approach has some disadvantages as well. While on the surface, the approach
seems highly secure, there are several security concerns with it:

1This can be easily accommodated using physical means during contract signing.

26 R. Chandramouli et al.

VM Signing Engine

Out of B
and Secure Channel

Via Internet

Private Key

Public Key
Cloud Provider

Cloud Consumer

VM, Signature

Verification
Engine

Fig. A.1 VM template authentication using digital signatures

1. First of all, how does the cloud Consumer communicate securely with the
verification engine to provide the public key and to obtain the verification results.
Let us assume that the cloud Consumer can establish a secure session using TLS
or SSH.

2. Then the question becomes: how does the cloud Consumer trust the verification
engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template signature verification.

3. Furthermore, whatever means the cloud Consumer uses to establish trust in the
verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

A.2 VM Template Authentication Using Cryptographic
Hash Function

Another technique of assuring the integrity of the VM template is by using a
cryptographic hash function, such as SHA-256, to compute a hash value on the VM
template, and the Consumers obtaining the hash value using an out-of-band means
as illustrated in Fig. A.2.

Cryptographic Key Management Issues and Challenges in Cloud Services 27

VM

Hashing Engine
Out o

f B
and Secu

re Channel

Via Internet

Hash

Hash

Cloud Provider

Cloud Consumer

Verification
Engine

Fig. A.2 VM template authentication using cryptographic hash

The approach has the advantage of requiring no key management. However, the
hash value of the VM template needs to be provided to the consumers using means
that assure its integrity and source (e.g., physically). The cloud Consumer provides
this hash value for comparison during VM template authentication.

The approach has several disadvantages. Some of the disadvantages are common
to those for digital signatures:

1. This approach has the limitation that each time the VM template’ is modified, a
new hash value needs to be promulgated using a secure, out-of-band means.

2. The approach has the limitation that each VM template hash value needs to be
promulgated using secure, out-of-band means. One can assume that the cloud
will have multiple VM templates.

3. Just like the digital signature, this approach does not solve the problem of the
cloud Consumer communicating securely with the verification engine to provide
the hash value and obtaining the verification results. Let us assume that the cloud
Consumer can establish a secure session using TLS or SSH.

4. Then the question becomes: how does the cloud Consumer trust the verification
engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template verification.

5. Furthermore, whatever means the cloud Consumer uses to establish trust in the
verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

28 R. Chandramouli et al.

A.3 VM Template Authentication Using Message
Authentication Code (MAC)

As illustrated in Fig. A.3, another approach is to use a MAC. A MAC is calculated
using a cryptographic function, such as a keyed hash function or a mode of operation
for a symmetric block cipher algorithm, that produces a message authentication code
using a secret shared by the Provider and the Consumers.

The approach has the advantage of the cloud Provider being able to create and
modify multiple VM templates and all cloud Consumers being able to verify the
source and integrity of the VM template via MAC verification. It also has the
advantage of simplified key management. All that is required are the following:
(a) the cloud Provider needs to create a single secret key and protect it from
unauthorized use and from unauthorized disclosure; (b) the cloud Provider needs
to provide to each cloud Consumer with the secret key in a secure manner2; and (c)
the cloud Consumer needs to protect the secret key from unauthorized disclosure.

The approach has several disadvantages. Some of the disadvantages are common
to those for using digital signatures:

1. Unless the secret key is unique per Consumer, this approach is vulnerable to one
Consumer modifying a VM template to compromise another Consumer. Having
unique keys for each Consumer will increase a cloud Provider’s key management
challenge

VM Keyed MAC
Engine

Out of B
and Secure Channel

Via Internet

Secret Key
Secret K

ey

Secret Key

Cloud Provider

Cloud Consumer

VM, MAC

Verification
Engine

Fig. A.3 VM template authentication using MAC

2This can be easily accommodated using physical means during contract signing.

Cryptographic Key Management Issues and Challenges in Cloud Services 29

2. Just like the use of a digital signature, this approach does not solve the problem
of the cloud Consumer communicating securely with the verification engine to
provide the secret key and to obtain the verification results. Let us assume that
the cloud Consumer can establish a secure session using TLS or SSH.

3. Then the question becomes: how does the cloud Consumer trust the verification
engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template authentication.

4. Furthermore, whatever means the cloud Consumer uses to establish trust in the
verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

A.4 VM Template Authentication Based on Cloud Provider
Discretionary Access Control

Under this approach Consumers obtain the VM template from a location that can
be modified by the Provider only (i.e., the VM template is protected using discre-
tionary access controls). Though this form of authentication is not a cryptographic
technique, we have included this for completeness as a possible approach for VM
template authentication.

A.5 Conclusion

In conclusion, one can see from our higher-level security analysis of the possible
cryptographic techniques for authenticating VM templates, that none of them solve
the twin problem of establishing trust in the VM template, as well as in the verifica-
tion engine. Hence, our suggested solution for VM template authentication is:

1. The cloud Consumer should use SSL or SSH to establish a secure session with
the VM template integrity verification engine.

2. The application instance housing the VM integrity verification engine needs to
be configured to run as a secure appliance on a specially hardened VM. The
verification engine should also include appropriate public keys, secret keys,
and/or hash values, depending on the VM template authentication technique
chosen by the cloud Provider. Note that this approach obviates the need for a
secure, out-of-band channel between the cloud Provider and the cloud Consumer.
This approach also allows the cloud Provider to change keys, algorithms,
authentication method and/or a VM template without having a secure, out-of-
band channel with the cloud Consumer. Note that a cloud Provider may use
different cryptographic techniques (digital signatures, cryptographic hash, or
MAC) to protect different VM templates.

30 R. Chandramouli et al.

3. The cloud Consumer should check out any VM template, and authenticate the
VM template and launch the VM.

The advantage of having a verification engine as opposed to having a VM
template under discretionary access control is the added flexibility for the cloud
Provider to only secure the verification engine using discretionary access control, as
opposed to a myriad of VM templates.

References

1. F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, NIST Cloud Computing
Reference Architecture (NIST SP 500-292), National Institute of Standards and Technology,
U.S. Department of Commerce (2011). http://www.nist.gov/customcf/get_pdf.cfm?pub_id=
909505

2. P. Mell and T. Grance, The NIST definition of cloud computing (NIST SP 800-145), National
Institute of Standards and Technology, U.S. Department of Commerce (2011) http://csrc.nist.
gov/publications/nistpubs/800-145/SP800-145.pdf

3. L. Badger, D. Berstein, R. Bohn, F. de Valux, M. Hogan, J. Mao, J. Messina, K. Mills, A. Sokol,
J. Tong, F. Whiteside, and D. Leaf, US government cloud computing technology roadmap
volume 1: High-priority requirements to further USG agency cloud computing adoption (NIST
SP 500-293, Vol. 1), National Institute of Standards and Technology, U.S. Department of
Commerce (2011). http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf

4. L. Badger, R. Bohn, S. Chu, M. Hogan, F. Liu, V. Kaufmann, J. Mao, J. Messina, K. Mills,
A. Sokol, J. Tong, F. Whiteside, and D. Leaf, US government cloud computing technology
roadmap volume II: Useful information for cloud adopters (NIST SP 500-293, Vol. 2), National
Institute of Standards and Technology, U.S. Department of Commerce (2011). http://www.nist.
gov/itl/cloud/upload/SP_500_293_volumeII.pdf.

5. L. Badger, T. Grance, R. Patt-Corner, and J. Voas, Cloud Computing Synopsis and Recommen-
dations (NIST SP 800-146), National Institute of Standards and Technology, U.S. Department
of Commerce (2012). http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

6. W. Jansen and T. Grance, Guidelines on Security and Privacy in Public Cloud Computing
(NIST SP 800-144). National Institute of Standards and Technology, U.S. Department of
Commerce (2011). http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf.

7. Secure Shell (SSH) Transport Layer Protocol, http://www.ietf.org/rfc/rfc4253.txt
8. The Transport Layer Security (TLS) Protocol Version 1.2, http://tools.ietf.org/html/rfc5246
9. Internet Security Glossary, Version 2, http://tools.ietf.org/rfc/rfc4949.txt

10. F.Bracci, A.Corradi and L.Foschini, Database Security Management for Healthcare SaaS in the
Amazon AWS Cloud, IEEE Computer, 2012.

11. Understanding and Selecting a Database Encryption or Tokenization Solution, http://securosis.
com

12. Best Practices in Securing Your Customer Data in Salesforce, Force.com, and Chatter, http://
www.ciphercloud.com

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeII.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeII.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
http://www.ietf.org/rfc/rfc4253.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/rfc/rfc4949.txt
http://securosis.com
http://securosis.com
http://www.ciphercloud.com
http://www.ciphercloud.com

Costs and Security in Clouds

Yao Chen and Radu Sion

Abstract Cloud computing has emerged as an important paradigm for deploying
services and applications for both enterprises and end-users. In this chapter, we
explore two important aspects of cloud computing – costs and security. We aim to
answer two questions: (1) Is cloud computing a cost effective endeavor? (2) How
much security can we afford in the cloud while maintaining the cost benefits of
outsourcing?

To answer these questions, we start by looking at the economics of computing
in general and clouds in particular. Specifically, we derive the end-to-end cost of a
CPU cycle in various environments and show that its cost lies between 0.5 picocents
in efficient clouds and nearly 27 picocents for small enterprises (1 picocent =
$1× 10−14), values validated against current cloud pricing. We show that cloud
computing makes sense only in scenarios when the clients distance can be offset by
a minimal application computation footprint. We then explore the cost of common
cryptography primitives as well as the viability of their deployment for cloud
security purposes. It turns out that securing outsourced data and computation against
untrusted clouds is often costlier than the associated savings, with outsourcing
mechanisms up to several orders of magnitudes costlier than their non-outsourced
locally run alternatives.

1 Introduction

As computing becomes embedded in the very fabric of our society, the exponential
growth and advances in cheap, high-speed communication allow for unprecedented
levels of global information exchange and interaction. As a result, new market forces

Y. Chen (�) • R. Sion
Network Security and Applied Cryptography Lab, Stony Brook University,
Stony Brook, NY, USA
e-mail: yaochen@cs.stonybrook.edu; sion@cs.stonybrook.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__2,
© Springer Science+Business Media New York 2014

31

mailto:yaochen@cs.stonybrook.edu
mailto:sion@cs.stonybrook.edu

32 Y. Chen and R. Sion

emerge that propel toward a fundamental, cost-efficient paradigm shift in the way
computing is deployed and delivered: computing outsourcing.

Computing outsourcing provides great elasticity and scalability of resources.
It minimizes client-side management overheads and benefit from a service
provider’s global expertise consolidation and bulk pricing, and helps users avoid
the capital expense in acquiring computing resources. The past decades’ traditional
outsourcing paradigms have usually involved established service providers such as
IBM that manage or host clients’ machines in dedicated data centers. More recently,
first storage and then computation outsourcing has been commoditized through the
emergence of globally-sized enterprises such as Google, Yahoo, Amazon, and Sun
which started offering increasingly complex storage and computation outsourcing
“cloud” services. CPU cycles have become consumer merchandise.

So far, the end-to-end viability of cloud computing has mostly not been explored.
Is a remotely hosted computing cycle in a cloud indeed cheaper than performing it
locally when considering the end-to-end bottom-line? It seems the markets have
spoken and the increasing number of service providers can be viewed as testimony
that this indeed is the case. Yet by what margins? And what are the features of
suitable applications for cloud deployment? As the migration from in-house data
centers to the clouds is non-trivial and fraught with potentially large costs, asking
these questions is essential.

In this chapter, to understand the viability of clouds, we provide a cost model for
computing in different environments and derive the dollar cost of primitives such as
CPU cycles, storage and network transfers. Using the model, we then evaluate cloud
outsourcing end-to-end and derive a threshold principle defining when outsourcing
indeed is economically viable, i.e., when computing-related savings outweigh the
costs of networking. We then evaluate the footprints and types of applications most
suited for cloud deployment.

Despite the associated buzz, clouds have been somewhat less successful in
attracting medium to large size corporations. Such clients often fall under strict
regulatory compliance requirements for manipulating information or simply are
reluctant to place sensitive data and computation logic under the control of a remote,
third-party provider, without practical assurances of privacy and confidentiality in
which the provider is un-trusted. Significant challenges lie in the path of successful
large-scale adoption.

To address this, existing secure outsourcing research addressed several issues
including guaranteeing integrity, confidentiality and privacy of outsourced data to
secure querying on outsourced encrypted database. Such assurances will likely
require strong cryptography as part of elaborate intra- and client-cloud protocols.
Yet, strong crypto is expensive. Thus, it is important to ask: how much cryptography
can we afford in the cloud while maintaining the cost benefits of outsourcing?

Some believe the answer is simply none. For example, in an interview [56]
Whitfield Diffie argued that “current techniques would more than undo the
economy [of] outsourcing and show little sign of becoming practical.”

Here we set out to find out whether this holds and if so, by what margins. One
way to look at this is in terms of CPU cycles. For each desired un-secured client CPU

Costs and Security in Clouds 33

cycle, how many additional cloud cycles can we spend on cryptography, before its
outsourcing becomes too expensive? We end up gaining the insight that today’s
secure data outsourcing primitives are often orders of magnitude more expensive
than local execution, mainly due to the fact that we do not know how to process
complex functions on encrypted data efficiently enough. And outsourcing simple
operations – such as existing research in querying encrypted data, keyword searches,
selections, projections, and simple aggregates – is simply not profitable. Thus,
while traditional security mechanisms allow the elegant handling of inter-client and
outside adversaries, today it is still too costly to secure against cloud insiders with
cryptography.

2 Cost Models

To reach the granularity of compute cycles we explore the cost of running
computing at different levels. We chose environments of increasing size: home,
small enterprises, mid-size enterprises and large size data centers. The boundaries
between these setups are often dynamic and the main reason we’re using them is to
help differentiate a set of key parameters.1

2.1 Levels

Home Users (H). We include this scenario as a baseline for a simple home setup
containing several computers. This could correspond to individuals with spare time
to maintain a small set of computers, or a very small home-based enterprise with
no staffing overheads. It is important to consider this scenario as it represents a
potentially large slice of the outsourcing market, especially through application
such as mail, document, media and personal blog/web hosting. Also this niche is
important as it features a set of peculiarities, including access to residential energy
pricing, negligible cooling, rental and management costs (as we will not factor
individuals’ time in).

Small Enterprises (S). We consider here any scenario involving an infrastructure
of up to 1,000 servers run in-house in a commercial enterprise. The cost structure
will start to feature most of the usual suspects, including commercial energy and
network pricing, cooling, space leases, staffing etc. Small enterprises however
can not afford custom hardware, efficient power-distribution, and cooling or ded-
icated buildings among others. More importantly, in addition to power distribution

1We note it is not the subject of our work to explore in-depth data center infrastructures. A plethora
of online sources discuss issues related to data centers, often focusing on power and overall
efficiency (most notably James Hamilton’s blog [27]).

34 Y. Chen and R. Sion

inefficiencies, due to their nature, small enterprises cannot be run at high utilization
as they would be usually under the incidence of business cycles and its associated
peak loads.

Mid-size Enterprises (M). We consider here setups of up to 10,000 servers, run
by a corporation, often in its own dedicated data center(s). Mid-size enterprises
might have some clout and access to better service deals for network service as
well as more efficient cooling and power distribution. They are not fully global,
yet could feature several centers across one or two time zones, allowing increased
independence from local load cycles as well as the ability to handle daily peaks
better by shifting loads across timezones. All the above results ultimately in
increased utilization (20–25 % est.) and overall efficiency.

Large Enterprises/Clouds (L). Clouds and large enterprises run over 10,000
servers, cross multiple time-zones, often literally at a global level, with large
data centers distributed across all continents and often in tens to hundreds of
countries. For example Google has built a 30-acre site in Dalles, Oregon, next to
a hydroelectric dam providing cheap power. The site is composed of 34,000 sqft
buildings [33]. Especially in cloud setups, high speed networks allow global-wide
distribution and integration of load from thousands of individual points of load. This
in turn flattens the 24-h overall load curve and allows for efficient peak handling
and comparably high utilization factors (50–60 % est. [28]). Cloud providers run the
most efficient infrastructures, and often are at the forefront of innovation. Moreover,
clouds have access to bulk-pricing for network service from large ISPs, often one
order of magnitude cheaper than mid-size enterprises.

2.2 Factors

We now consider the cost factors that come into play across all of the above levels.
These can be divided into a set of inter-dependent vectors, including: hardware
(servers, networking gear), building (floor space leasing), energy (running hardware
and cooling), service (administration, staffing, software maintenance), and network
service. Other breakdown layouts of these factors are possible.

Server Hardware. Hardware costs include servers, racks, power equipment, net-
work equipment, cooling equipment etc. We will discuss network equipment
later. Naturally, there are different choices for data centers to increase capacity.
Up-scaling – the purchase of a smaller number of more expensive off-the-shelf
multi-blade servers – is often considered in mid-size enterprises, and features
lower software and infrastructure cost advantages. Scaling out – deploying massive
numbers of low-cost, almost “expendable” custom-designed and often in-house built
multi-CPU server boards – is a strategy available to large, cloud-size providers such
as Google and Amazon. The advantages of this approach are low hardware costs,
low inter-failure correlation and high overall efficiency factors. Sometimes these

Costs and Security in Clouds 35

two approaches can be combined; e.g., servers embedded with 4–8 CPUs can be
considered as scale-out architecture of scale-up nodes [25]. We note that these costs
drop with time, likely even by the time this goes to print. For example, while many
of the current documented mid-size deployments use single or multi-CPU System-
X blade servers at around $1–2,000 each [32], large data centers deploy custom
setups at about $3,000 for 4 CPUs, near-future developments could yield important
changes.2 We will be conservative and empirically assume home PC prices of
around $750/CPU, small and mid-size enterprise costs of around $1,000/CPU (for
2 CPU blades) and cloud-level costs of no more than $500/CPU.

Energy. Energy in data centers does not only include power, computing and net-
working hardware but the entire support infrastructure, including cooling, physical
security, and overall facilities. With the increasing density of today’s rack structure,
temperature rises more rapidly than in old server rooms [7]. For example, any
additional 40 W/sqft can lead to a rise of 25 ◦F in 10 min. A simple rough way
to infer power costs is by estimating the Power Usage Efficiency (PUE) of the data
center. The PUE is a metric to evaluate the energy efficiency of a data center [24]
(PUE=Total Power Usage/IT Equipment Power Usage). PUE ranges from 1.13 to
1.21 for big providers as claimed by Google, Facebook and 1.22 for efficient data
center containers, to over 2 for typical data centers [44,51]. We will assume 1.2–1.5
PUE for large enterprises, 1.6–2 PUE for mid-size enterprises and 2–2.5 for small
enterprises [44]. Costs of electricity are relatively uniform and documented [23].

Service. Evaluating the staffing requirements for data centers is an extremely com-
plex endeavor as it involves a number of components such as software development
and management, hardware repair, maintenance of cooling, building, network and
power services.

Analytical approaches are challenged by the sparsity of available relevant
supporting data sets. We deployed a set of commonly accepted rule of thumb
values that have been empirically developed and validate well [29]: the server to
administrator ratio varies from 2:1 up to experimental 2,500:1 values due to different
degrees of automation and data management. In deployment, small to mid-size data
centers feature a ratio of 100–140:1 whereas cloud level centers can go up to 1,000:1
[23, 28].

Network Hardware. To allow for analysis of network intensive protocols, we
chose to separate network transport service costs from the other factors of impact in
the bottom line for CPU cycle. Specifically, while the internal network infrastructure
costs will be factored in the data center costs, network service will not. We will
estimate separately the cost of transferring a bit reliably to/from the data center
intermediated by outside ISPs’ networks. Internal network infrastructure costs can
be estimated by evaluating the number of required switches and routers. The design

2In one documented instance, e.g., Amazon is working with Rackable Systems to deliver an under
$700 AMD-based 6 CPU board dubbed CEMS (Cooperative Expendable Micro-Slice Servers) V3.

36 Y. Chen and R. Sion

of scalable large economy network topology with high inter-node bandwidth for
data centers is an ever ongoing research problem [45]. We base our results on some
of the latest state of the art research, deploying fat tree interconnect structures. Fat
trees have been shown to offer significantly lower overall hardware costs with good
overall connectivity factors. For example inter-connecting a 27,648 node cluster
with Ethernet switching can be done for under $8.64 million [45], assuming $3,000
48-port GigE switches at the edge, aggregation and core layers.

Floor Space. Floor space costs vary wildly, by location and use. While office space
can be had for up to tens of dollars/sqft/month in Manhattan, data center space can
be had at much lower rates, being as low as $0.1/sqft/month [15,16,48]. While small
to mid-size enterprises usually have data centers near their location (thus sometimes
incurring office-level pricing), large companies such as Google and Microsoft tend
to build data centers on owned land, in less populated place where the per sqft price
can be brought down much lower, often amortized to zero over time.

We also note that floor surface is directly related to power consumption and
cooling with designs supporting anywhere from 40 to 250 W/sqft [21]. Thus, the
overall power requirements (driven by CPUs) impact directly the required floor
space.

3 Cost Primitives

Armed with knowledge of the above factors, we now estimate the cost of basic
computing primitives.

3.1 CPU Cycles

We start by evaluating the amortized dollar cost of a CPU cycle in Eq. (1). See
notations in Table 1 and various setups’ parameters in Table 2.

Table 1 Notations for
Eq. (1)

Symbol Definition

Ns,Nw Number of servers, switches
α administrator : server ratio
β W/sqft
λs,λw Server, switch price
λp,λ f Personnel, floor cost per second
λe Electricity price/(W·s)
μ CPU utilization
ν CPU frequency
τs,τw Servers, switches lifespan (5 years)
wp,wi Server power at peak, idle

Costs and Security in Clouds 37

Table 2 Sample key parameters

Parameters Home Small Medium Large

CPU utilization 5–8 % 10–12 % 15–20 % 40–56 %
server:admin ratio N.A. 100–140 140–200 800–1k
Space (sqft/month) N.A. $0.5 $0.5 $0.25
PUE N.A. 2–2.5 1.6–2 1.2–1.5

Table 3 Current pricings of
a CPU cycle from major
cloud providers

Provider Picocents

Amazon EC2 0.93–2.36
Google AppEngine Up to 2.31
Microsoft Azure Up to 1.96

CycleCost =
Server+Energy+Service+Network+F loor

Total Cycles

=
λs ·Ns/τs +(wp · μ +wi · (1−μ)) ·PUE ·λe +

Ns
α ·λp +λw ·Nw/τw +λ f · (wp·μ+wi·(1−μ))·PUE

β

μ ·ν ·Ns

(1)

The results are depicted in Fig. 1, costs ranging from 0.45 picocents/cycle in very
large cloud settings all the way to (S), the costliest environment, where a cycle costs
up to 27 picocents (1 US picocent = $1× 10−14).

0

5

10

15

20

25

30

35

40

10(H) 50(S) 500(S) 5K(M) 100K(L)

C
P
U

 c
yc

le
 c

os
t
(p

ic
oc

en
t)

Number of servers

5

27

14

2
<0.5

Fig. 1 CPU cycle costs

We validate our results by exploring the pricing of the main cloud providers
(Table 3). The prices lie surprisingly close to each other and to our estimates,
ranging from 0.93 to 2.36 picocents/cycle. The difference in cost is due to the fact
that these points include not only CPUs but also intra-cloud networking, instance-
specific disk storage and cloud providers’ profit.

38 Y. Chen and R. Sion

Table 4 Summarized network service costs [28, 49]

H, S M L

Monthly $44.90 $200 $95 $13
Bandwidth (d / u) 15/5 Mbps per Mbps per Mbps
Dedicated No Yes Yes Yes
Picocent/bit 115/345 >7,000 3,665 500

Table 5 Per bit transfer costs Settings Cost (picocent)

(H, S)→ Cloud 900
(M)→ Cloud 4,500

3.2 Network Service

Published numbers place network service costs for large data centers at around
$13/Mbps/month and for mid-size setups at $95/Mbps/month [28] for guaran-
teed bandwidth. Home user and small enterprise pricing usually benefits from
economies of scale and numbers are readily available, e.g., Optimum Online
provides 15/5 Mbps internet connection for small business starting at $44.9/month.
We note however that the quoted bandwidth is not guaranteed and refers only to
the hop connecting the client to the provider. However, if home users or small
enterprises were to order guaranteed network service, the price is much higher
(around $200/Mbps/month as quoted to us by network providers.). In this work,
we mainly consider non-guaranteed network services for home users and small
enterprises. We summarize these costs in Table 4.

The end-to-end cost of network transfer includes the cost on both communicating
parties and the CPU overheads of transferring a bit from one application layer to
another (a minimum about 20 CPU cycles per 32 bit data). Moreover, for reliable
networking (e.g., TCP/IP) we need to also factor in the additional traffic and spent
CPU cycles (e.g., SYN, SYN/ACK, ACK, for connection establishment, ACKs for
sent data, window management, routing, re-transmissions, etc.). If we assume a 1 %
TCP re-transmission rate, 1 ACK packet for every two data packets, it costs more
than 900 picocents to transfer 1 bit reliably in the S→ L scenario. We summarize
the per bit transfer cost in other scenarios in Table 5.

Moreover, if the applications are not optimized to fully utilize payloads these
costs could be much higher, e.g., if only a 32 bit value payload is sent, it would
incur upwards of 10,000 picocents per bit.

3.3 Storage

Simply storing bits on disks has become truly cheap. Increased hardware reliability
(with mean time between failures rated routinely above a million hours even for
consumer markets) and economies of scale resulted in extreme drops in the costs of

Costs and Security in Clouds 39

disks. Table 6 shows the costs of ownership and operation of a representative sample
(by no means exhaustive) set of commonly available consumer-level disks (numbers
were obtained in November 2009 from numerous online sources, including the disk
vendors’ sites, price search engines and independent online hardware discussion
sites). Costs incorporate energy and amortized acquisition components. Energy
is dominating at 60–70 % of the total cost. We note that actual observed MTBF
are often up to about 3.4 times lower than advertised [53]. We considered this in
computing the values in Table 6.

In terms of amortized acquisition costs, the Seagate Barracuda provides the best
price/hardware/MTBF ratio at 7.67 picocents/bit/year. We observe that hardware
constitutes only a small percentage of the overall costs, e.g., for the Maxtor, the
amortized hardware acquisition being only 12.16 % of the overall ownership cost.
And it holds across all considered (H,S,M,L) levels due to the fact that the existence
of a critical mass of disk consumer level buyers results in economies of scale pricing
available for everybody.

This leads to the insight that, if storage power and maintenance has been already
factored in, then, for most scenarios direct storage hardware costs are very small
and can be mostly ignored when evaluating network and CPU intensive protocols.
Naturally this does not hold if the main costs include long-term data at rest with
little or no computation and networking. But, as soon as data gets transferred or
processed, direct storage costs become negligible.

4 To or Not To

The insights gained above in the costs of computation, network and storage enable
us to explore the viability of the outsourcing endeavor.

We start by noting that it is easy to find scenarios for which it does not make
sense to outsource to clouds from a strict cost-centric perspective. For example, the
CPU cycle costs in Fig. 1 immediately show that it is not profitable to outsource
personal workloads (H) to small (S) enterprises (we denote this H→ S) as it would
naturally incur additional network bandwidth and CPU cycle costs are much higher
for (S).

Yet, what about the other options, {H→M, H→ L, S→M, S→ L, M→ L}?
The answer in each of these cases is highly dependent on the type of applications

outsourced. Basically, there are three main services the cloud provides: storage,
networking and computation. The costs of these three primitives behave differently
across computing environments of different scale, thus their outsourcing costs are
different. Often the relation between these primitives in an application determines
its outsourcing saving. In the following, we explore applications of different types in
two outsourcing scenarios (single-client outsourcing and multi-client outsourcing).

40 Y. Chen and R. Sion

T
ab

le
6

M
ag

ne
ti

c
di

sk
st

or
ag

e
co

st
s

C
ap

.
Pr

ic
e

A
dj

.M
T

B
F

A
m

or
t.

ac
q.

Po
w

er
Po

w
er

co
st

To
ta

lc
os

t
D

is
k

(G
B

)
(U

SD
)

(m
il

ll
io

n
ho

ur
s)

(p
ic

oc
en

t/b
it/

ye
ar

)
(W

)
(p

ic
oc

en
t/

bi
t/

ye
ar

)
(p

ic
oc

en
t/

bi
t/

ye
ar

)
A

qc
.%

M
ax

to
r

D
ia

m
on

d
M

ax
50

0
53

0.
35

32
.8

9
10

.8
5

23
7.

62
27

0.
50

12
.1

6
H

it
ac

hi
D

es
ks

ta
r

7k
50

0
50

0
67

0.
29

49
.8

9
12

.3
0

26
9.

37
31

9.
26

15
.6

3
H

it
ac

hi
U

lt
ra

st
ar

A
7K

10
00

1,
02

4
15

3
0.

35
46

.3
6

11
.5

0
12

2.
97

16
9.

33
27

.3
8

W
D

C
av

ia
r

G
P

L
ow

Po
w

er
1,

02
4

10
3

0.
29

37
.4

5
5.

75
61

.4
9

98
.9

3
37

.8
5

Se
ag

at
e

B
ar

ra
cu

da
72

00
.1

0
75

0
63

0.
35

26
.0

6
10

.9
5

15
9.

87
18

5.
93

14
.0

2

Costs and Security in Clouds 41

4.1 Single-Client Model

One of the simplest computation outsourcing scenarios involves clients shifting their
own CPU-intensive applications onto clouds, to save costs. Later these same clients
(or delegates thereof) will access these cloud-hosted applications for their own use.
An example of this are large corporations considering migrating in-house data
centers to clouds.

Naturally, this is feasible when the savings outweigh the outsourcing overhead
costs. In general, outsourcing a computation load from environment a to environ-
ment b is economically justified when

Savings =Cycles× ca−Cycles× cb−Transa→b ≥ 0

⇔Cycles≥ Transa→b

ca− cb
(2)

where Cycles is the number of CPU cycles needed per bit data, and cx denotes the
CPU cycle cost for environment X ∈ {H,S,M,L}. We call this the first minimal
CPU-intensive requirement criterion (we will also call this the “first outsourcing
criterion”):

First outsourcing criterion:

For an application accessed mainly by clients in environment a, outsourcing it
from a to another environment b is economically justified iff. its computation
load exceeds Transa→b

ca−cb
compute cycles per transferred input bit.

To illustrate, consider a 32 bit item in the S → L case. We know from
Sect. 3.2, that the cost of reliably transferring 32 bits can be anywhere 28,000 and
320,000 picocents depending on the nature of the connection and whether connec-
tion establishment costs are amortized across multiple sends. For consistency, we
disregard for now any application-specific costs, such as the existence of results and
their transfer costs. As a lower bound, we get

Cycles≥ TransS→L

cS− cL
∈ (1,000,12,000).

In other words, if the task at hand requires anywhere less than 1,000 CPU cycles
(in the most optimized possible case) per 32 bits of input data, it is not profitable to
outsource from a home setting to a large cloud.

Moreover, 1,000 turns out to also be a lower bound across all outsourcing options
as can be seen in Fig. 2. For H → L, we have anywhere between Cycles > 6,400

42 Y. Chen and R. Sion

-200

0

200

400

600

800

1000

1200

1000 10000 100000

Sa
vi

ng
s

(K
 p

ic
oc

en
t)

CPU cycles per 32bit data

o o o

H to Cloud
S to Cloud

M to Cloud

Fig. 2 Cost savings of
outsourcing per 32 bit data
from S→ L, H→ L, M→ L
with increasing application
computation load. The lower
bounds on the numbers of
CPU cycles needed to justify
cloud outsourcing are 1,000,
6,400, and 96,100
respectively

and Cycles > 71,000. For M → L, due to the much higher network costs of (M),
32 bit transfers can cost anywhere between 144,000 and 1,615,000 picocents, which
results in anywhere between Cycles > 96,100 and Cycles > 1,070,000.

Applications which are well suited in such CPU-intensive outsourcing include
highly scientific computations [52], which usually consume large amounts of CPU.
We note that recently Mathworks seems to have tapped this niche, by adding a
parallel toolbox in Matlab which enables users to do parallel computing on the
Amazon Elastic Compute Cloud [3].

We note that the above minimal CPU-intensive requirement criterion specifically
refers to network costs that cannot be amortized over multiple transactions, hence
the wording “per transferred input bit”. Yet, often applications involve significant
amounts of already cloud-hosted data inputs, and in such cases, the criterion simply
refers to any data that is transferred to/from the cloud.

Simple Storage. Overall, the CPU-intensive requirement of the criterion suggests
that purely storage-centric applications are not good candidates for unified-client
outsourcing in the cloud. This indeed seems to hold for simple storage outsourcing
in which a single data customer places data remotely for future access. For the S→ L
scenario, the amortized cost of storing a bit reliably either locally or remotely is
under 9 picocents/month (including power). Network transfer however, is at least
900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher than storing the data.

Thus, from a pure technological cost-centric point of view, it is simply not
effective to store data remotely. Depending on the application network footprint,
outsourced storage costs (incl. network transfer cost) can be upwards of 2+ orders
of magnitude higher than local storage. It’s worth noticing that cloud providers also
allow users to mail a portable storage device and upload the data to the cloud over
their local network [2]. Yet, as we discussed in Sect. 3.3, simple storage without
data processing has become truly cheap even for end users. Using clouds as remote
storage is not cost efficient.

Costs and Security in Clouds 43

Searchable Storage and Databases. Scenarios where outsourcing of data
becomes viable include any data processing mechanisms that allow the amortization
of networked data transfer over multiple queries to the data set.

Consider for example a searchable outsourced database of size n which allows
queries of certain search selectivity s (search results are of size n ∗ s ∗ Sr, where
Sr is the size of a single result) to be submitted. In this case, the intuition dictates
that outsourcing is profitable for a CPU-intensive search process (e.g., for a large
database size) and a high selectivity (very low s). For illustration, if searching
involves a binary index (O(logn) CPU cycles), and a comparison takes Ccompare = 3
cycles, we have

Savings = logn×Ccompare× (ca− cb)

Costtrans = nsSrTransa→b,

and, for cost viability, we want

logn×Ccompare× (ca− cb)≥ nsBTransa→b

⇔ s≤ logn×Ccompare× (ca− cb)

nSrTransa→b

In the S→ L scenario, for a database of n = 109 keywords and Sr = 32 bits, this
results in s≤ 8.3× 10−11. And s will be even lower when database size grows.

4.2 Multi-Client Model

Yet, paradoxically, despite the above conclusion, storage outsourcing seems to be
thriving. Just recently, Smugmug, a paid digital photo sharing website, announced
$1M savings a year by outsourcing storage to Amazon S3 [1].

This can be explained as follows. The core storage costs coupled with the lack of
an intense-enough CPU load, indeed do not justify outsourcing for a unified client
scenario. Yet, web-based enterprises such as Smugmug, by their very nature provide
services to third party clients and thus also require mechanisms to handle their
clients’ remote access, e.g., through often CPU-intensive web interfaces supported
by web servers running on actual CPUs. This can increase the per-bit CPU footprint
significantly. Moreover, network service pricing for mid-size enterprises can be up
to one order of magnitude higher than for clouds, as can be seen in Table 4 – and in
effect, clouds can afford to also operate as an efficient content distribution (CDN)
service.

Overall, the case for cloud feasibility becomes more complicated in multi-client
scenarios. The outsourcing criterion needs to be updated as a function also of
the different network service deals of the two environments. Then, outsourcing is
economically tenable when

Cycles× ca−Cycles× cb+(Transc→a−Transc→b)≥ 0 (3)

44 Y. Chen and R. Sion

where c is the environment from which the majority of client accesses are coming to
the outsourced application (Fig. 3). Then, the outsourcing criterion can be rewritten
into a more complete (“second outsourcing criterion”) form as follows:

Second outsourcing criterion:

For an application that resides in environment a, whose accesses come mainly
from clients in environment c, outsourcing it from a to another environment b
is economically justified iff.

its computation load exceeds Transc→b−Transc→a
ca−cb

compute cycles per trans-
ferred input bit – for ca ≥ cb and Transc→a ≤ Transc→b, or,

its computation footprint is lower than Transc→a−Transc→b
cb−ca

compute cycles
per transferred input bit – for ca ≤ cb and Transc→a ≥ Transc→b

We can better understand Eq. (3) by detailing the following four cases:

(i) ca≥ cb and Transc→a≥ Transc→b, in this case, savings are constantly positive,
yielding no CPU intensive requirement;

(ii) ca ≤ cb and Transc→a ≤ Transc→b, no savings can be achieved (constantly
negative);

(iii) ca ≥ cb and Transc→a ≤ Transc→b, then Cycles≥ Transc→b−Transc→a
ca−cb

(iv) ca ≤ cb and Transc→a ≥ Transc→b, in this case, Cycles ≤ Transc→a−Transc→b
cb−ca

,
this unusual case corresponds to an upper bound on the amount of computation
an application can have before outsourcing becomes counter-productive;

We show in Fig. 3 the cost savings of S,M→ L with different third party clients
and applications at different CPU intensive levels. The CPU intensive requirements
are much lower than in the single-client model. Note, given today’s cost points, M→
L is always profitable and falls into case (i). This may also explain the success of
Smugmug outsourcing to Amazon S3. Moreover, if S requires guaranteed network
service for the application (see numbers in Table 4), S→ L also falls into case (i).

For completeness, the equation also covers cases when outsourcing occurs from
larger to smaller scale environments, as in (iv). One illustrative instance of this is a
large enterprise placing smaller data centers strategically closer to targeted clients.
Although CPU cycles will cost more in these smaller data centers, this kind of
outsourcing can effectively take advantage of its associated network proximity.

This illustrates another point of feasibility for clouds: content distribution for
applications with numerous (often geographically dispersed) clients. This is not only
profitable because of the better network service deals that clouds get from major
ISPs, but also due to their on-demand scalability promise etc., which is outside of
the scope of this chapter.

For multi-client applications such as content distribution or data processing,
it is important to consider also intra-cloud communication as well as the actual

Costs and Security in Clouds 45

-50

0

50

100

150

200

250

300

1000 10000
Sa

vi
ng

s
(k

 p
ic

oc
en

t)
CPU cycles per 32bit data

a = S, c = S
a = S, c = M
a = M, c = S

a = M, c = M

Fig. 3 Illustration of the cost
savings of outsourcing per
32 bit of data from a ∈ {S,M}
to b = L with c ∈ {S,M} –
with increasing computation
load – according to Eq. (3)
(corresponding to the second
outsourcing criterion). For
a = S,c = S, the CPU
intensive requirement is
410 cycles per 32 bit

Table 7 Inter- and intra-cloud network transfer pricing (picocent)

Amazon Microsoft Google

Data-in 1,164 1,164 1,164
Data-out 1,979 1,746 1,396
First 10 TB/month
Next 40 TB/month 1,513 1,746 1,396
Next 100 TB/month 1,280 1,746 1,396
Next 150 TB/month 1,164 1,746 1,396
Intra-cloud/same region 0 0 0
Intra-cloud/inter-region 116 N/A N/A

profit-including pricing of bit transfers in/out of clouds. For example, at the time of
this writing, clouds charge 1,164 picocents per incoming bit, roughly double than
what they are paying to ISPs. Table 7 illustrates these pricing points.

5 Cryptography

So far we know that a CPU cycle will set us back 0.45–27 picocents, transferring
a bit costs at least 900 picocents, and storing it costs under 100 picocents/year. We
now explore the costs of basic crypto and modular arithmetic. All values are in
picocents. Note that CPU cycles needed in cryptographic operations often vary with
optimization algorithms and types of hardware used (e.g., specialized secure CPUs
and crypto accelerators with hardware RSA engines [4] are cheaper per cycle than
general-purpose CPUs).

Symmetric Key Crypto. We first evaluate the per-bit costs of AES-128, AES-
192, AES-256 and illustrate in Table 8. The evaluation is based on results from the
ECRYPT Benchmarking of Cryptographic Systems (eBACS) [9].

46 Y. Chen and R. Sion

Table 8 AES-128, AES-192, AES-256 costs (per byte) on 64-byte input

AES-128 AES-192 AES-256

S 1.42E+ 03 1.48E+ 03 1.52E+ 03
L 2.37E+ 01 2.47E+ 01 2.53E+ 01

Table 9 Cost of RSA encryption/decryption on 59-byte messages (pico-
cents)

1,024 bit 2,048 bit

Encrypt Decrypt Encrypt Decrypt

S 3.74E+ 06 1.03E+ 08 8.99E+ 06 6.44E+ 08
L 6.24E+ 04 1.72E+ 06 1.50E+ 05 1.07E+ 07

Table 10 DSA on 59-byte messages. The 1,024-bit DSA uses 148-byte
secret key and 128-byte public key. The 2,048-bit DSA uses 276-byte
secret key and 256-byte public key

1,024 bit 2,048 bit

Sign Verify Sign Verify

S 5.73E+ 07 6.94E+ 07 1.89E+ 08 2.30E+ 08
L 9.55E+ 05 1.16E+ 06 3.15E+ 06 3.84E+ 06

Table 11 Costs of ECDSA signatures on 59-byte messages (curve over a
field of size 2163, 2409, 2571 respectively) (picocents)

ECDSA-163 ECDSA-409

KG/SGN Verify KG/SGN Verify

S 1.36E+ 08 2.65E+ 08 9.60E+ 08 1.91E+ 09
L 2.27E+ 06 4.41E+ 06 1.60E+ 07 3.19E+ 07

ECDSA-571

KG/SGN Verify

S 2.09E+ 09 4.18E+ 09
L 3.48E+ 07 6.96E+ 07

RSA. Numerous algorithms aim to improve the speed of RSA, mainly by reducing
the time to do modular multiplications. In Table 9, we illustrate the costs of RSA
encryption/decryption using benchmark results from [9].

PK Signatures. We illustrate costs of DSA, and ECDSA signatures based on NIST
elliptic curves [9] in Tables 10 and 11.

Cryptographic Hashes. We also show per byte cost of MD5 and SHA1 with varied
input sizes in Table 12.

Costs and Security in Clouds 47

Table 12 Per-byte cost of MD5 and SHA1 (with 64- and 4,096-byte
input)

MD5 SHA1

4,096 64 4,096 64

S 1.52E+ 02 3.75E+ 02 2.14E+ 02 6.44E+ 02
L 2.53E+ 00 6.25E+ 00 3.56E+ 00 1.07E+ 01

6 Secure Outsourcing

Thus armed with an understanding of computation, storage, network and crypto
costs, we now ask whether securing cloud computing against insiders is a viable
endeavor.

We start by exploring what security means in this context. Naturally, the
traditional usual suspects need to be handled in any outsourcing environment:
(mutual) authentication, logic certification, inter-client isolation, network security
as well as general physical security. Yet, all of these issues are addressed extensively
in existing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will isolate the analysis from
the additional costs of software patching, peak provisioning for reliability, network
defenses etc.

6.1 Trust

We are concerned cloud clients being often reluctant to place sensitive data and
logic onto remote servers without guarantees of compliance to their security policies
[19, 35]. This is especially important in view of recent sub-poenas and other
security incidents involving cloud-hosted data [13, 14, 42]. The viability of the
cloud computing paradigm thus hinges directly on the issue of clients’ trust and
of major concern are cloud insiders. Yet how “trusted” are today’s clouds from this
perspective? We identify a set of scenarios.

Trusted clouds. In a trusted cloud, in the absence of unpredictable failures, clients
are served correctly, in accordance to an agreed upon service contract and the cloud
provider’s policies. No insiders act maliciously.

Untrusted clouds. For untrusted clouds, we distinguish several cases depending
on the types of illicit incentives existing for the cloud and the client policies with
which these will directly conflict. We call a cloud data-curious if insiders thereof
have incentives to violate confidentiality policies (mainly) for (sensitive) client
data. Similarly, in an access-curious cloud, insiders will aim to infer client access
patterns to data or reverse-engineer and understand outsourced computation logic.
A malicious cloud will focus mainly on (data and computation) integrity policies
and alter data or perform incorrect computation.

48 Y. Chen and R. Sion

Reasonable cloud insiders are likely to factor in the potential illicit gains (the
incentives to violate the policy), the penalty for getting caught, as well as the
probability of detection. Thus for most practical scenarios, insiders will engage in
such behavior only if they can get away undetected with high probability, e.g., when
no (cryptographic?) safeguards are in place to enable the detection.

6.2 Secure Outsourcing

Yet, millions of users embrace free web apps in an untrusted provider model. This
shows that today’s (mostly personal) cloud clients are willing to trade their privacy
for (free) service. This is not necessarily a bad thing, especially at this critical-mass
building stage, yet raises questions of clouds’ viability for commercial, regulatory-
compliant deployment, involving sensitive data and logic. And, from a bottom-line
cost-perspective, is it worth even trying? This is what we aim to understand here.

In the following we will assess whether clouds are economically tenable if
their users do not trust them and therefore must employ cryptography and
other mechanisms to protect their data. A number of experimental systems
and research efforts address the problem of outsourcing data to untrusted service
providers, including issues ranging from searching in remote encrypted data to
guaranteeing integrity and confidentiality to querying of outsourced data. In favor
of cloud computing, we will set our analysis in the most favorable S→ L scenario,
which yields most CPU cycle savings.

6.3 The Case for Basic Outsourcing

Before we tackle cloud security, let us look at the simplest computation outsourcing
scenario (where clients outsource data to the cloud, expect the cloud to process it,
and send the results back). In Chap. 1, we show that, to make (basic, unsecured)
outsourcing cost effective, the cost savings (mainly from cheaper CPU cycles) need
to outweigh the cloud’s distance from clients. In S→ L, outsourced tasks should
perform at least 1,000 CPU cycles per every 32 bit data, otherwise it is not worth
outsourcing them.

6.4 Encrypted Data Storage with Integrity

With an understanding of the basic boundary condition defining the viability of
outsourcing we now turn our attention to one of the most basic outsourcing scenarios
in which a single data client places data remotely for simple storage purposes. In the
S→ L scenario, the amortized cost of storing a bit reliably either locally or remotely

Costs and Security in Clouds 49

is under 9 picocents/month (including power). Network transfer however, is of at
least 900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher.

From a technological cost-centric point of view it is simply not effective to
store data remotely: outsourced storage costs can be upwards of 2+ orders of
magnitude higher than local storage for the S→ L scenario even in the absence
of security assurances.

Cost of Security. Yet, outsourced storage providers exist and thrive. This is likely
due to factors outside of our scope, such as the convenience of being able to have
access to the data from everywhere or collaborative application scenarios in which
multiple data users share single data stores (multi-client settings). Notwithstanding
the reason, since consumers have decided it is worth paying for outsourced storage,
the next question we ask is, how much more would security cost in this context? We
first survey some of the existing work.

Several existing systems encrypt data before storing it on potentially data-curious
servers [10, 12, 43]. File systems such as I3FS [34], GFS [22], and Checksummed
NCryptfs [54] perform online real-time integrity verification.

It can be seen that two main assurances are of concern here: integrity and
confidentiality. The cheapest integrity constructs deployed in most of the above
revolve around the use of hash-based MACs. As discussed above, SHA-1 based
keyed MAC constructs with 4,096-byte blocks would cost around 4 picocent/byte
on the server and 200 picocents/byte on the client side, leading to a total cost of
about 25 picocents/bit. This is at least four times lower than the cost of storing the
bit for a year and at least one order of magnitude lower than the costs incurred by
transferring the same bit (at 900+ picocents/bit). Thus, for outsourced storage,
integrity assurance overheads are negligible.

For publicly verifiable constructs, crypto-hash chains can help amortize their
costs over multiple blocks. In the extreme case, a single signature could authenticate
an entire file system, at the expense of increased I/O overheads for verification.
Usually, a chain only includes a set of blocks.

For an average of twenty 4,096 byte blocks3 secured by a single hash-chain
signed using 1,024-bit RSA, would yield an amortized cost approximately 1 M pic-
ocents per 4,096-byte block (30+ picocents/bit) for client read verification and
180+ picocents/bit for write/signatures. This is up to 8 times more expensive than
the MAC based case.

3Douceur et al. [20], show that file sizes can be modeled using a log-normal distribution. E.g, for
μe = 8.46, σ e = 2.4 and 20,000 files, the median file size would be 4 KB, mean 80 KB, along with
a small number of files with sizes exceeding 1 GB [5, 20].

50 Y. Chen and R. Sion

6.5 Searches on Encrypted Data

Confidentiality alone can be achieved by encrypting the outsourced content before
outsourcing to potentially access-curious servers. Once encrypted however, it cannot
be easily processed by servers.

One of the first processing primitives that has been explored allows clients to
search directly in remote encrypted data [6, 8, 17]. In these efforts, clients either
linearly process the data using symmetric key encryption mechanisms, or, more
often, outsource additional secure (meta)data mostly of size linear in the order of the
original data set. This meta-data aids the server in searching through the encrypted
data set while revealing as little as possible.

But is remote searching worth it vs. local storage? We concluded above that
simply using a cloud as a remote file server is extremely non-profitable, up to several
orders of magnitude. Could the searching application possibly make a difference?
This would hold if either (i) the task of searching would be extremely CPU intensive
allowing the cloud savings to kick in and offset the large losses due to network
transfer, or (ii) the search is extremely selective and its results are a very small
subset of the outsourced data set – thus amortizing the initial transfer cost over
multiple searches.

We note that existing work does not support any complex search predicates
outside of simple keyword matching search. Thus the only hope there is that the
search-related CPU load (e.g., string comparison) will be enough cheaper in the
cloud to offset the initial and result transfer costs.

Keyword searching can be done in asymptotically constant time, given enough
storage or logarithmic if B-trees are used. While the client could maintain indexes
and only deploy the cloud as a file server, we already discovered that this is not
going to be profitable. Thus if we are to have any chance to benefit here, the index
structures need to also be stored on the server.

In this case, the search cost includes the CPU cycle costs in reading the B-tree
and performing binary searches within B-tree nodes. As an example, consider 32 bit
search keys (e.g., as they can be read in one cycle from RAM), and a 1 TB database.
One to three CPU cycles are needed to initiate the disk DMA per reading, and
each comparison in the binary search requires another 1–3 cycles (for executing
a comparison conditional jump operation). A B-tree with 16 KB nodes will have
approximately a 1,000 fanout and a height of 4–5, so performing a search on
this B-tree index requires about 100–300 CPU cycles. Thus in this simple remote
search, S→ L outsourcing would result in CPU-related savings of around 2,500–
8,000 picocents per access. Transferring 32 bits from S → L costs upwards of
900 picocents. Outsourced searching becomes thus more expensive for any results
upwards of 36 bytes per query.

Costs and Security in Clouds 51

6.6 Insights into Secure Query Processing

By now we start to suspect that similar insights hold also for outsourced query
processing. This is because we now know that (i) the tasks to be outsourced
should be CPU-intensive enough to offset the network overhead – in other words,
outsourcing peanut counting will never be profitable, and (ii) existing confidentiality
(e.g., homomorphisms) and integrity (e.g., hash trees, aggregated signatures, hash
chains) mechanisms can “secure” only very simple basic arithmetic (addition,
multiplication) or data retrieval (selection, projection) which would cost under a few
of cycles per word if done in an unsecured manner. In other words, we do not know
yet how to secure anything more complex than peanut counting. And outsourcing of
peanut counting is counter productive in the first place. Ergo our suspicion.

We start by surveying existing mechanisms. Hacigumus et al. [26] propose a
method to execute SQL queries over partly obfuscated outsourced data to protect
data confidentiality against a data-curious server. The main functionality relies on
(i) partly obfuscating the outsourced data by dividing it into a set of partitions, (ii)
query rewriting of original queries into querying referencing partitions instead of
individual tuples, and (iii) client-side pruning of (necessarily coarse grained) results.
The information leaked to the server is balancing a trade-off between client-side
and server-side processing, as a function of the data segment size. Hore et al. [30]
explores optimal bucket sizes for certain range queries.

Ge et al. [55] discuss executing aggregation queries with confidentiality on an
untrusted server. Unfortunately, due to the use of extremely expensive homomor-
phisms this scheme leads to large processing times for any reasonably security
parameter settings (e.g., for 1,024 bit fields, 12+ days per query are required).

Other researchers have explored the issue of correctness in settings with
potentially malicious servers. In a publisher-subscriber model, Devanbu et al.
deployed Merkle trees to authenticate data published at a third party’s site [18], and
then explored a general model for authenticating data structures [39,40]. In [46,47]
as well as in [37], mechanisms for efficient integrity and origin authentication for
selection predicate query results are introduced. Different signature schemes (DSA,
RSA, Merkle trees [41] and BGLS [11]) are explored as potential alternatives for
data authentication primitives. In [36, 50] verification objects VO are deployed
to authenticate data retrieval in “edge computing” In [31, 38] Merkle tree and
cryptographic hashing constructs are deployed to authenticate range query results.

To summarize, existing secure outsourced query mechanisms deploy (i)
partitioning-based schemes and symmetric key encryption for (“statistical” only)
confidentiality, (ii) homomorphisms for oblivious aggregation (SUM, COUNT)
queries (simply too slow to be practical), (iii) hash trees/chains and (iv) signature
chaining and aggregation to ensure correctness of selection/range queries and
projection operators. SUM, COUNT, and projection usually behave linearly in the
database size. Selection and range queries may be performed in constant time,
logarithmic time or linear time depending on the queried attribute (e.g., whether it
is a primary key) and the type of index used.

52 Y. Chen and R. Sion

For illustration purposes, w.l.o.g., consider a scenario most favorable to out-
sourcing, i.e., assuming the operations behave linearly and are extremely selective,
only incurring two 32-bit data transfers between the client and the cloud (one for
the instruction and one for the result). Informally, to offset the network cost of
900× 32× 2 = 57,600 picocents, only traversing a database of size at least 105

will generate enough CPU cycle cost savings. Thus it seems that with very selective
queries (returning very little data) over large enough databases, outsourcing can
break even.

Cost of Security. In the absence of security constructs, we were able to build a
scenario for which outsourcing is viable. But what about a general scenario? What
are the overheads of security there? It is important to understand whether the cost
savings will be enough to offset them. While detailing individual secure query
protocols is out of scope here, it is possible to reason generally and gain an insight
into the associated order of magnitudes.

Existing integrity mechanisms deploy hash trees, hash chains and signatures to
secure simple selection, projection or range queries. Security overheads would then
include at least the (client-side) hash tree proof re-construction (O(logn) crypto-
hashes) and subsequent signature verification of the tree’s root. The hash tree
proofs are often used to authenticate range boundaries. The returned element set
is then authenticated often through either a hash chain (in the case of range joins,
at least 30 picocents per byte) or aggregated signature constructs (e.g., roughly
60,000 picocents each, for selects or projections). This involves either modular
arithmetic or crypto-hashing of the order of the result data set. For illustration
purposes, we will again favor the case for outsourcing, and assume only crypto-
hashing and a linear operation are applied.

Consider a database that has n = 109 tuples of 64 bits each. In that case (binary)
hash tree nodes need to be at least 240 bits (80+ 160 bits= 2 pointers + hash value)
long. If we assume 3 CPU cycles are needed per data item, the boundary condition
results in selectivity s ≤ 0.00037 before outsourcing starts to make economical
sense. In a more typical scenario of s = 0.001 (queries are returning 0.1 % of the
tuples), a per-query loss of over 0.3 US cents will be incurred.

The above holds only for the S→ L scenario in which hash trees are deployed. In
the case of signature aggregation [38, 47], the break-even selectivity would be even
lower due to the higher computation overheads.

7 Conclusions

In this chapter, we mused on the dollar cost and security in cloud computing. We
started by giving a cost model for computation, storage and networking in different
environments. We saw that CPU cycles cost no less than 0.45 picocents, a bit cannot
be transferred without paying at least 900 picocents, and stored a year without a
pocket setback of at least 100 picocents. We validated the cost model with today’s
pricing points of clouds.

Costs and Security in Clouds 53

We determine two “outsourcing criteria”, defining the boundary condition of
cloud migration viability. The “first outsourcing criterion” considers unified client
applications and postulates that, from a technological cost-centric perspective,
outsourcing them is profitable for computation intensive tasks, specifically, when
its (mostly computation-related) cost savings are sufficient to offset client-cloud
network distances. This happens today for unified client applications requiring no
less than 1,000 CPU cycles per each 32 bits of client-cloud transferred input.

In the case of applications with third-party clients, the feasibility equation
changes dramatically. The “second outsourcing criterion” postulates that, for today’s
pricing points, for mid-size enterprises, it always makes sense to outsource to
cloud. For small enterprises, to make outsourcing profitable, the CPU intensive
requirement is much lower than in the single-client model (410 CPU cycles per
32 bit data) or even no CPU intensive requirement if they require guaranteed
network service. This is mainly because of the dominating costs of networking, and
the fact that in the single-client model, the comparison baseline would not include
any networking costs (as the data would be accessed locally).

We also explored whether cryptography can be deployed to secure cloud comput-
ing against insiders. We estimated common cryptography costs (AES, MD5, SHA-1,
RSA, DSA, and ECDSA) and finally explored outsourcing of data and computation
to untrusted clouds. We showed that deploying the cloud as a simple remote
encrypted file system is extremely unfeasible if considering only core technology
costs. We also concluded that existing secure outsourced data query mechanisms are
mostly cost-unfeasible because today’s cryptography simply lacks the expressive
power to efficiently support outsourcing to untrusted clouds. Hope is not lost
however. We found borderline cases where outsourcing of simple range queries
can break even when compared with local execution. These scenarios involve large
amounts of outsourced data (e.g., 109 tuples) and extremely selective queries which
return only an infinitesimal fraction of the original data (e.g., 0.00037 %).

References

1. Amazon s3: Show me the money. http://blogs.smugmug.com/don/2006/11/10/amazon-s3-
show-me-the-money/.

2. Aws import/export. http://aws.amazon.com/importexport/.
3. Parallel computing with matlab on amazon elastic compute cloud (ec2). http://www.

mathworks.com/programs/techkits/ec2-paper.html.
4. IBM 4764 PCI-X Cryptographic Coprocessor. Online at http://www-03.ibm.com/security/

cryptocards/pcixcc/overview.shtml, 2007.
5. Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A five-year study

of file-system metadata. In Proceedings of the 5th USENIX conference on File and Storage
Technologies (FAST 07), Berkeley, CA, USA, 2007. USENIX Association.

6. Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. Provably-secure schemes for
basic query support in outsourced databases. In Steve Barker and Gail-Joon Ahn, editors,
DBSec, volume 4602 of Lecture Notes in Computer Science, pages 14–30. Springer, 2007.

http://blogs.smugmug.com/don/2006/11/10/amazon-s3-show-me-the-money/
http://blogs.smugmug.com/don/2006/11/10/amazon-s3-show-me-the-money/
http://aws.amazon.com/importexport/
http://www.mathworks.com/programs/techkits/ec2-paper.html
http://www.mathworks.com/programs/techkits/ec2-paper.html
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml

54 Y. Chen and R. Sion

7. AMD. Power and cooling in the data centers. Power and cooling in the data centers, Online at
http://enterprise.amd.com/Downloads/34146A_PC_WP_en.pdf.

8. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently search-
able encryption. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 535–552. Springer, 2007.

9. Daniel J. Bernstein and Tanja Lange (editors). ebacs: Ecrypt benchmarking of cryptographic
systems. Online at http://bench.cr.yp.to accessed 30 Jan. 2009.

10. M. Blaze. A Cryptographic File System for Unix. In Proceedings of the first ACM Conference
on Computer and Communications Security, pages 9–16, Fairfax, VA, 1993. ACM.

11. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In EuroCrypt, 2003.

12. G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The Design and Implementation
of a Transparent Cryptographic Filesystem for UNIX. In Proceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 245–252, Boston, MA, June 2001.

13. CNN. Feds seek Google records in porn probe. Online at http://www.cnn.com, January 2006.
14. CNN. YouTube ordered to reveal its viewers. Online at http://www.cnn.com, July 2008.
15. Katherine Conrad. Data centers hot once again in the bay area. Online at http://findarticles.

com/p/articles/mi_qn4176/is_20070401/ai_n18782997.
16. Qwest Communications Corp. Space furniture rental. Online at http://www.qwest.com/about/

policy/docs/qcc/documents/WO-sfr-Amd52_111006.pdf.
17. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In CCS ’06: Proceedings of the
13th ACM conference on Computer and communications security, pages 79–88, New York,
NY, USA, 2006. ACM.

18. Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine. Authentic
third-party data publication. In IFIP Workshop on Database Security, pages 101–112, 2000.

19. Donna Bogatin. Google Apps data risks: Security vs. privacy. Online at http://blogs.zdnet.com/
micro-markets/?p=1021, February 2007.

20. John R. Douceur and William J. Bolosky. A large-scale study of file-system contents.
In Proceedings of the ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 59–70. ACM New York, NY, USA, 1999.

21. Janice Fetzer. Internet data centers:end user & developer requirements. Online at http://www.
utilityeda.com/Summer2006/Mares.pdf.

22. S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP ’03), pages 29–43, Bolton Landing,
NY, October 2003. ACM SIGOPS.

23. Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The cost of a cloud:
Research problems in data center networks. In SIGCOM Computer Communications Review,
2009.

24. The Green Grid. Green grid metrics: Describing data center power efficiency. Online at http://
www.thegreengrid.org/gg_content/Green_Grid_Metrics_WP.pdf.

25. The Clipper Group. Scale-up and scale-out architectures-ibm provides choice with the xseries.
Technical report, 2005.

26. H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in
the database-service-provider model. In Proceedings of the ACM SIGMOD international
conference on Management of data, pages 216–227. ACM Press, 2002.

27. James Hamilton. Perspectives Blog. Online at http://mvdirona.com/jrh/work/.
28. James Hamilton. Internet-scale service efficiency. Large Scale Distributed Systems & Middle-

ware (LADIS 2008)„ 2008.
29. James Hamilton. On designing and deploying internet-scale services. Technical report, Win-

dows Live Services Platform, Microsoft, 2008.
30. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In

Proceedings of ACM SIGMOD, 2004.

http://enterprise.amd.com/Downloads/34146A_PC_WP_en.pdf
http://bench.cr.yp.to
http://www.cnn.com
http://www.cnn.com
http://findarticles.com/p/articles/mi_qn4176/is_20070401/ai_n18782997
http://findarticles.com/p/articles/mi_qn4176/is_20070401/ai_n18782997
http://www.qwest.com/about/policy/docs/qcc/documents/WO-sfr-Amd52_111006.pdf
http://www.qwest.com/about/policy/docs/qcc/documents/WO-sfr-Amd52_111006.pdf
http://blogs.zdnet.com/micro-markets/?p=1021
http://blogs.zdnet.com/micro-markets/?p=1021
http://www.utilityeda.com/Summer2006/Mares.pdf
http://www.utilityeda.com/Summer2006/Mares.pdf
http://www.thegreengrid.org/gg_content/Green_Grid_Metrics_WP.pdf
http://www.thegreengrid.org/gg_content/Green_Grid_Metrics_WP.pdf
http://mvdirona.com/jrh/work/

Costs and Security in Clouds 55

31. HweeHwa Pang and Arpit Jain and Krithi Ramamritham and Kian-Lee Tan. Verifying
Completeness of Relational Query Results in Data Publishing. In Proceedings of ACM
SIGMOD, 2005.

32. IBM. IBM blade servers. Online at http://www-03.ibm.com/systems/bladecenter/hardware/
servers/.

33. Saul Hansell John Markoff. Hiding in plain sight, google seeks more power. Online at http://
www.nytimes.com/2006/06/14/technology/14search.html.

34. A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel Integrity Checker and
Intrusion Detection File System. In Proceedings of the 18th USENIX Large Installation System
Administration Conference (LISA 2004), pages 69–79, Atlanta, GA, November 2004. USENIX
Association.

35. Larry Dignan. Will you trust Google with your data? Online at http://blogs.zdnet.com/BTL/?
p=4544, February 2007.

36. M. Atallah and C. YounSun and A. Kundu. Efficient Data Authentication in an Environment
of Untrusted Third-Party Distributors. In 24th International Conference on Data Engineering
ICDE, pages 696–704, 2008.

37. Maithili Narasimha and Gene Tsudik. DSAC: integrity for outsourced databases with signature
aggregation and chaining. Technical report, 2005.

38. Maithili Narasimha and Gene Tsudik. Authentication of Outsourced Databases using Signature
Aggregation and Chaining. In Proceedings of DASFAA, 2006.

39. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine. A general model
for authenticated data structures, 2001.

40. Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April Kwong, and
Stuart G. Stubblebine. A general model for authenticated data structures. Algorithmica,
39(1):21–41, 2004.

41. R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Research in
Security and Privacy, 1980.

42. Jeralyn Merritt. What google searches and data mining mean for you. Online at http://www.
talkleft.com/story/2006/01/25/692/74066.

43. Microsoft Research. Encrypting File System for Windows 2000. Technical report, Microsoft
Corporation, July 1999. www.microsoft.com/windows2000/techinfo/howitworks/security/
encrypt.asp.

44. Rich Miller. Microsoft: Pue of 1.22 for data center containers. Online at http://www.
datacenterknowledge.com/archives/2008/10/20/microsoft-pue-of-122-for-data-center-
containers/.

45. Al-Fares Mohammad, Loukissas Alexander, and Vahdat Amin. A scalable, commodity data
center network architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74, 2008.

46. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced
databases. In Proceedings of Network and Distributed System Security (NDSS), 2004.

47. E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets: Immutability for aggre-
gated/condensed signatures. In Computer Security - ESORICS 2004, volume 3193 of Lecture
Notes in Computer Science, pages 160–176. Springer, 2004.

48. Department of Administration. Records management fact sheet 13. Online at http://www.doa.
state.wi.us/facts_view.asp?factid=68&locid=2.

49. Optimum. Optimum online plans. Online at http://www.buyoptimum.com.
50. HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge computing. In ICDE

’04: Proceedings of the 20th International Conference on Data Engineering, page 560,
Washington, DC, USA, 2004. IEEE Computer Society.

51. U.S. Environmental Protection Agency ENERGY STAR Program. Report to congress on server
and data center energy efficiency public law 109–431, 2007.

52. J. J. Rehr, J. P. Gardner, M. Prange, L. Svec, and F. Vila. Scientific computing in the cloud,
2008.

http://www-03.ibm.com/systems/bladecenter/hardware/servers/
http://www-03.ibm.com/systems/bladecenter/hardware/servers/
http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.nytimes.com/2006/06/14/technology/14search.html
http://blogs.zdnet.com/BTL/?p=4544
http://blogs.zdnet.com/BTL/?p=4544
http://www.talkleft.com/story/2006/01/25/692/74066
http://www.talkleft.com/story/2006/01/25/692/74066
www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp
www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp
http://www.datacenterknowledge.com/archives/2008/10/20/microsoft-pue-of-122-for-data-center-containers/
http://www.datacenterknowledge.com/archives/2008/10/20/microsoft-pue-of-122-for-data-center-containers/
http://www.datacenterknowledge.com/archives/2008/10/20/microsoft-pue-of-122-for-data-center-containers/
http://www.doa.state.wi.us/facts_view.asp?factid=68&locid=2
http://www.doa.state.wi.us/facts_view.asp?factid=68&locid=2
http://www.buyoptimum.com

56 Y. Chen and R. Sion

53. Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does an mttf of
1,000,000 hours mean to you? In FAST ’07: Proceedings of the 5th USENIX conference on File
and Storage Technologies, Berkeley, CA, USA, 2007.

54. G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing File System Integrity Through Check-
sums. Technical Report FSL-04-04, Computer Science Department, Stony Brook University,
May 2004. www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf.

55. Tingjian Ge and Stan Zdonik. Answering aggregation queries in a secure system model. In
VLDB ’07: Proceedings of the 33rd international conference on Very large data bases, pages
519–530. VLDB Endowment, 2007.

56. Whitfield Diffie. How Secure Is Cloud Computing? Online at http://www.technologyreview.
com/computing/23951/, November 2009.

www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf
http://www.technologyreview.com/computing/23951/
http://www.technologyreview.com/computing/23951/

Hardware-Enhanced Security for Cloud
Computing

Jakub Szefer and Ruby B. Lee

Abstract Cloud computing has ushered in an era where cloud customers are able to
rapidly access on-demand computing resources made available by third party cloud
providers. The cloud providers who maintain these computing resources and lease
them out to customers leverage economies of scale and sharing of resources to be
able to provide these resources to customers at favorable prices. Cloud computing
and this sharing of resources, however, introduces a number of security concerns.
These concerns include other, potentially malicious, customers who are co-located
on the same system as the customer; or even untrusted system software running
on the remote systems where a customer’s code and data execute or reside. To
tackle these security concerns, we explore how secure hardware architectures can
provide more protections to a customer’s code and data in a cloud computing setting.
In particular, we want to show that with hardware enhancements we can make
computing in the cloud as secure as in your own dedicated facilities.

1 Introduction

Figure 1 shows the IaaS cloud computing model. Other cloud computing models,
such as Platform-as-a-Service (PaaS) or Software-as-a-Service (SaaS), can be built
on top of the IaaS model and could leverage the hardware security enhancements
we present for the IaaS scenario. Before switching to using cloud computing, users
may have run applications and an operating system (OS) on their own hardware.
Now, these cloud customers use resources and remote servers of the cloud provider.
Rather than have a physical machine, they now have a virtual machine (VM) that
runs alongside other customers’ VMs. The cloud provider runs a hypervisor, or a

J. Szefer (�) • R.B. Lee
Department of Electrical Engineering, Princeton University,
Olden St., Princeton, NJ 08544, USA
e-mail: szefer@princeton.edu; rblee@princeton.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__3,
© Springer Science+Business Media New York 2014

57

mailto:szefer@princeton.edu
mailto:rblee@princeton.edu

58 J. Szefer and R.B. Lee

virtual machine monitor, that virtualizes the system and orchestrates the sharing of
the physical resources so that it can support many VMs on one physical system.
This way, many customers’ VMs can run on one server, consolidating resources
and allowing the cloud provider to lease out the VMs to the customers at favorable
prices. The cloud provider maintains many servers where customers’ code and
data are executed or stored. They also have management infrastructure including
dedicated cloud management servers. This infrastructure is in place so that the
customer’s can easily provision and release computing resources. Customers often
use the VMs to run some service (e.g., a web site) that is accessed by end users.

1.1 Security Concerns

While cloud computing provides many economic benefits, there are a number of
new security concerns that need to be addressed. There are two main differences
when using a virtual machine, versus executing or storing code and data on your
own physical machine. First, there are the other customers’ VMs that are running
on the same system. These VMs should be properly isolated when running on top
of a trusted hypervisor. Unfortunately, current hypervisors are susceptible to various
vulnerabilities and bugs. A malicious cloud computing customer who is co-located
on the same system as his or her competitor may attack the virtualization layer.
Once the virtualization layer is compromised, its privilege level can be used to
examine or obstruct other VMs. The second difference is the virtualization layer

Fig. 1 The IaaS cloud computing model

Hardware-Enhanced Security for Cloud Computing 59

itself, running underneath all the VMs. It is a privileged software layer which has
access to all the resources of the system. It can affect confidentiality, integrity or
availability of the different VMs. Normally, the hypervisor is trusted and is used
to provide security for the rest of the system. If customers used virtualization on
their own systems, they would know exactly the version and type of hypervisor
used. In a cloud computing setting, however, customers have no control over the
hypervisor. While the hypervisors are designed by reputable commercial vendors
(e.g. VMWare [2]) or open-source projects (e.g. Xen [3]), they are still susceptible
to bugs and vulnerabilities. Unlike in your own facilities, where you will not likely
attack yourself, in a cloud computing setting one of the co-located VMs may belong
to a different customer who may have incentive to compromise the hypervisor.
Moreover, some cloud providers may be coerced to install a malicious hypervisor to
spy on certain victim customers’ VMs.

1.2 Approaches to Securing Cloud Computing

These security issues have been recognized by various researchers and many have
worked on different approaches to securing cloud computing. Since the hypervisor
is the key virtualization technology needed for cloud computing, most have focused
on securing the hypervisor. Researchers have looked at minimizing the hypervisor
code size [15, 17], as the number of bugs or vulnerabilities is often correlated to
the code size. Others have explored re-writing the hypervisor to harden it against
potential attacks [26]. Work has also been done on protecting different parts of the
hypervisor, such as protecting the core hypervisor from the management OS [11].
A key duty of the hypervisor is to isolate the different VMs and research has been
done on improving the isolation [8, 14]. Some researchers have also attempted to
come ahead of the threats, and analyze or introspect the VMs to try to find attacks
before they actually happen [9, 13, 16, 27]. While these approaches improve the
security of the system, they still require a trusted hypervisor to be present for correct
secure operation of the system. These are all software-based approaches, so far.

Hardware security approaches have also been explored. One example is the
Trusted Platform Module (TPM) [22], which is a co-processor used for security-
related functionality such as measurement and attestation of the software stack. The
TPM can help measure the software at load time, but not actively protect it during
runtime. More powerful co-processors [7] provide physical tamper prevention and
a secure execution environment inside the co-processor. Such co-processors allow
for secure execution of applications, but not entire VMs. Commercial processors
have also included new extensions inside the main processor, mainly to support
the extra software layer, i.e., the hypervisor. This, however, assumes a trusted
all-powerful system software which runs in this new privileged mode. Academic
projects have also looked at hardware-enhancements to improve security. A number
of architectures have been proposed [5, 6, 10, 12, 18], many of these architectures
focus on protecting software modules.

60 J. Szefer and R.B. Lee

Rather than protecting software modules in an application, below we will
describe how new hardware architecture can be used to enhance system security
by protecting an entire virtual machine in a cloud computing setting – against
the hypervisor as an adversary. Unlike software, hardware is mostly immutable.
Any security features introduced in hardware chips are thus very difficult, if not
impossible, to alter after the chip is manufactured. Also, hardware is logically the
lowest layer in the system. For example, a security feature implemented in an OS
running inside a VM can be bypassed by a malicious or compromised hypervisor
(which is logically below the VM); there is not a layer below the hardware that
can bypass security features implemented in hardware. Unlike other hardware
approaches, we focus on protecting the entire VM, and consider the aggressive new
threat model of a malicious or compromised hypervisor.

In particular, we describe our proposed concept of hypervisor-secure virtualiza-
tion [19–21]. Architectures implementing hypervisor-secure virtualization include
new hardware for protecting the confidentiality and integrity of a VM’s memory,
even from the (previously) all-powerful hypervisor. Hypervisor-secure virtualiza-
tion architectures allow for a hypervisor to manage many VMs per system, share
processor cores among different VMs, or even oversubscribe memory resources.
These are all the features that can be done today, but the key difference is that
thanks to the new hardware additions, the hypervisor can be untrusted. Using such
architectures brings customers closer to the goal of being able to run their virtual
machines remotely, and be as secure as if they were running the OS and applications
locally on their own physical machine.

2 Hardware-Enhanced Security with HyperWall

We have realized hypervisor-secure virtualization in our HyperWall architecture
[19–21]. The architecture uses resource isolation (focusing on the memory of the
virtual machines), as opposed to cryptographic isolation, to implement hypervisor-
secure virtualization. The architecture enhances today’s multi-core server archi-
tectures by introducing new hardware additions. These additions enable selected
portions of a virtual machine’s memory to be isolated from the hypervisor,
from DMA (direct memory access) by peripheral devices, and from other virtual
machines. HyperWall’s target usage scenario is the Infrastructure-as-a-Service
(IaaS) cloud computing model, presented in the introduction, but the other cloud
computing models can be built on top of it as well.

With HyperWall, cloud customers can run their virtual machines on the hosted
infrastructure. Simultaneously, the infrastructure provider can host many other
customers’ virtual machines and run a hypervisor that the customer need not trust for
the confidentiality and integrity of his or her code and data, because of our hardware
enhancements. To enable the customer to protect a VM’s code and data, the cloud
customers are given the means to provide some specification of the confidentiality
and integrity protection they want for the data and code that will run inside the VM.

Hardware-Enhanced Security for Cloud Computing 61

Given the VM image and the requested protections, a HyperWall-enabled server
can start and measure the VM and the protections. The attestation of the initialized
VM and protections is communicated to the customer, and once they verify that the
correct VM and protections indeed started, they can establish a secure channel with
the VM. Any sensitive code or data can now be sent to the VM through the secure
channel and executed remotely. When the VM is finished, the hardware properly
cleans up the protected memory. The architecture and the various stages of the
operation are discussed below, after the threat model.

2.1 Threat Model

The goal of HyperWall is to protect against confidentiality and integrity attacks by
a malicious or compromised hypervisor. We want to retain an active hypervisor so
that most of the features of today’s cloud computing offerings can be supported
(e.g., VM sharing processor cores or memory oversubscripiton). Thanks to the
new, trusted hardware we can provide these protections. However, we do not
consider attacks on availability, side-channels or physical attacks. In particular,
a cloud provider needs a way to turn off VMs if customers stop paying or
misbehave, so availability can not be guaranteed for customers. Side-channels are
a separate research topic that has been explored [24, 25]. Hardware side-channel
protections can be integrated with architectures such as HyperWall. We also expect
a non-malicious infrastructure provider and secure facilities so that physical attack
protection is not needed.

The protections focus on protecting entire VMs. The OS and applications inside
a VM are assumed to be trusted by the customer. The customer is also assumed to
know which memory regions inside the VM (in terms of guest physical pages) need
protection, and the OS will not allocate sensitive code or data to the unprotected
memory regions.

2.2 Memory Protection

With HyperWall, we opt for an isolation-based approach to memory protection
where individual guest physical memory regions (e.g. consisting of multiple
memory pages) are assigned to a virtual machine and the hardware enforces that
only the owner virtual machine can access these pages. Memory isolation is not a
new concept, but in today’s commodity systems, the hypervisor software is relied
on to provide and enforce the isolation. A powerful attack by the hypervisor is
to give itself (directly, via a colluding VM, or via a device and direct memory
access) the ability to snoop on some target VM’s memory. To counter this, our
hardware can enforce the memory isolation between the VMs and the hypervisor.
Because hardware is logically below the hypervisor software, it can store protection
specification data and contain security functionality which cannot be altered by the
hypervisor.

62 J. Szefer and R.B. Lee

Figure 2 shows the different memory regions in a HyperWall system. DRAM
represents the machine memory. That memory is allocated to different VMs. In
Fig. 2 we highlight different memory regions relevant to a protected VM.

First, there are the page table specifying address translation from guest physical
pages (managed by the OS inside the VM) to the machine pages (managed by the
hypervisor). This page table mapping is set by the hypervisor when it allocates
memory for the VM. It is locked and protected by our new hardware when the VM
is launched – thus preventing the hypervisor from updating the memory mapping
without intervention by our new hardware. Memory update is discussed later in the
chapter.

Second, there are the actual memory pages allocated to the VM and which
have been loaded with the VM image (i.e., the code and data that makes up the
OS and applications). These memory regions are defined by the page tables. The
hardware uses the page tables to locate these pages and protect them according to
the customer’s specification.

Third, the customer’s requested protections for the VM are a final part of memory
which need to be protected. When the hypervisor loads the VM, it loads the VM
images as well as these requested protections. The hardware needs to lock and
protect these memory pages so that the hypervisor can not alter the requested
protection data as the VM runs.

Fig. 2 The Confidentiality and Integrity Protection (CIP) table and the different protected memory
regions

2.3 Confidentiality and Integrity Protection Table

A new feature introduced in HyperWall is the Confidentiality and Integrity Pro-
tection table (CIP table). The CIP table, shown on the right of Fig. 2, store
the protection information for all machine memory pages, for all the VMs. An
interesting aspect of the CIP table, is that it is actually stored in DRAM (as shown
on the right side of Fig. 3).

Hardware-Enhanced Security for Cloud Computing 63

We re-use existing DRAM to store the CIP protection data, which eliminates the
need for special memory structures inside the processor or other parts of the system.
That portion of DRAM is made hardware-only accessible, and is off limits to the
hypervisor, the VMs, and the devices. During system boot up, our new hardware
locks part of the DRAM so no software can access it. This is a very flexible approach
as, for example, the memory can be updated – just install more DRAM – and when
the system is rebooted the hardware will allocate a proportionally sized portion to be
hardware-only accessible and to store the CIP table. Now hardware has an exclusive
memory storage region where it can keep protection information.

A customer’s specified protections come from the requested protection informa-
tion (also called pre-CIP). Given a guest physical address (from the page tables), the
pre-CIP data can be looked up to check the protections needed for the corresponding
page. The guest physical to machine address translation from the page tables can be
used to obtain the machine address where the guest physical page is mapped into.
This information can be combined and is stored in the CIP table.

Fig. 3 Different tables and memory regions utilized by the HyperWall architecture: hypervisor-
assigned page table is protected so the hardware knows the current memory mapping of the VM;
the VM’s memory itself is protected; the pre-CIP table is protected so the hypervisor cannot modify
the requested protections. The CIP table stores the information about these three memory regions,
and is stored in the hardware-only accessible memory. HD means Hypervisor Deny and DD means
DMA Deny

Figure 3 shows more details of the different tables stored in the memory, along
with sample guest physical addresses (GPA) and machine addresses (MA). The
figure also shows a signing key, SKhw that is unique to each processor supporting
HyperWall architecture. Initialization and the use of the different memory regions,
and the key, is discussed below.

64 J. Szefer and R.B. Lee

2.4 Protecting Confidentiality and Integrity of VMs
Under an Untrusted Hypervisor

There are three phases of the VM’s execution during which memory needs to be
protected by our new hardware to ensure the VM’s confidentiality and integrity.
First, the VM is initialized. Second, the VM runs. Finally, the VM is terminated.

VM Initialization

We have already discussed different memory regions relevant to a VM, shown
in Fig. 2. These memory regions are loaded by the hypervisor before the VM is
actually started. When the VM is launched, e.g., through the vmlaunch instruction,
the new HyperWall hardware is triggered. The first duty of the hardware is to
protect the memory regions by writing appropriate entries in the CIP table. The
hardware assigns a VID (this VID is different from the VM identification assigned
by the hypervisor, the hardware controls VIDs so the hypervisor cannot spoof them).
The CIP table entries, as shown in Fig. 3 identify the owner VM of each machine
memory page. For each page, the hardware first checks that the page is not in use
(by using the machine address to index the CIP table and ensure that the page is
free). If the page is free, the hardware assigns it to the VM. It writes the VID and
marks the page as in-use. It also writes the protection information for this page, e.g.,
deny hypervisor accesses (HD) or deny DMA accesses from devices (DD). For the
memory holding the page table and the requested protections, the memory is made
inaccessible to the hypervisor and DMA.1 For the memory pages of the VM, the
hardware reads the page table entries and the requested protections information to
see what protections were requested for the corresponding machine pages. If there
is an error at any time, the VM launch is aborted.

Once all the memory pages are protected, and before the VM actually begins
execution, the hardware calculates a cryptographic hash of the VM image and the
requested protections. This is done because the (untrusted) hypervisor may have
modified either of these before launching the VM. Once the memory pages are
protected, the hypervisor cannot modify them and the contents of these pages can be
measured. The measurements done by HyperWall are sent back to the customer. The
measurements are cryptographically signed with the processor’s signing key (shown
as SKhw in Fig. 3). The processor also has a digital certificate from the manufacturer.
A customer, given reference measurements of the known good VM image and
protections, signature of initialized VM’s measurements, a hardware certificate and
the hardware manufacturer’s certificate can validate the received measurements. The
measurement can be sent by the (untrusted) hypervisor and cloud infrastructure
to the customer. We assume strong cryptography and that without access to the

1Note that the hardware checks that the page is not in use, so it is automatically not accessible to
other VMs.

Hardware-Enhanced Security for Cloud Computing 65

private portion of the cryptographic key, the signatures can not be forged. To ensure
freshness and prevent replay attacks, the customer sends a nonce when requesting
the VM, and that nonce is included in the measurements that are sent back to the
customer.

VM Runtime

Once a VM is launched and running, the customer can start utilizing the protected
environment offered by the HyperWall architecture. The first step is to establish a
secure channel with the remote VM. Recall that the customer has already verified
that his VM image and requested protections were started properly; or found out
that they were not and stopped using that VM. Now the customer has the hardware
certificate for the remote machine where their VM is running and the VID of their
VM. We assume that the VM image originally contained no sensitive information,
but only stock OS and common applications and libraries, e.g., OpenSSL library for
cryptographic operations.

Establishing Secure Channel between Customer and VM Figure 4 shows how
a VM running on a HyperWall system can establish a secure channel with the
customer. The key to the secure communication is the VM’s protected memory.
Once the VM is launched and the memory is protected, it can generate a public-
private key pair (EKvm, DKvm). The hypervisor has no access to the protected
memory, so it can not see these newly generated keys. Next, the VM can use
HyperWall’s new sign_bytes instruction to sign the EKvm key. The signature also
includes the VID and a nonce that the customer sends. It is made with the hardware’s
signing key. A hypervisor or another VM can not spoof the signature as they

Fig. 4 Establishment of a secure communication channel with the VM

do not have access to the hardware signing key, SKhw, and the VID is included
automatically by hardware so other VMs cannot invoke the instruction and pretend
to be a different VM. The key, EKvm, and the signature are sent back to the customer.
Once he or she verifies the signature, he or she can use the key to send sensitive code
or data back to the VM (e.g., use it as part of a modified SSL protocol to establish a
secure channel).

66 J. Szefer and R.B. Lee

The code or data to be protected should be stored by the OS in the protected
memory regions. Now, the code and data can execute, with the HyperWall hardware
protecting the memory according to the customer’s specification. Even a malicious
or compromised hypervisor is not able to see into this memory.

Sharing Processor Cores Among VMs One of the features which makes cloud
computing appealing is that many VMs can share the same system. Often, this
requires scheduling more VMs than there are physical resources available, and
switching between the VMs as they run. One key resource needed by VMs is the
allocation of processor cores where the code actually executes. Scheduling many
VMs on the same physical cores requires suspending them (when the hypervisor
reads and saves processor state) and resuming them (when the hypervisor replaces
saved state and triggers the VM to run again). It is critical to protect the VM when
it is being suspended and resumed. The memory is already protected through the
CIP table, even if the VM is suspended as the CIP table entries remain in the CIP
until VM termination. The needed protections for suspending a VM are: protect
the VM’s virtual cores’ state so that it is correctly resumed later, and protect the
general-purpose registers which hold some of the code or data of the VM.

Figure 5 shows how a hypervisor could access contents of memory indirectly
when it is reading the registers of a processor core. It could not only read the
contents, but also modify them. To counter this, HyperWall encrypts general purpose
registers2 and generates a hash over the register state. When the VM is resumed, the
hash is checked and the registers decrypted, if the hash verification succeeds.

Fig. 5 Memory contents, copied to processor registers when the code executes, could be read
or modified by the hypervisor as it suspends a VM and copies registers to its own memory.
HyperWall protects register state on VM suspend and resume with the help of the Trust Evidence
and Configuration (TEC) table, which hold one entry for each VM

The original HyperWall architecture [21] has been improved to prevent certain
types of replay attacks during VM suspend and resume [19]. In our improved design,
a new set of Trust Evidence and Configuration (TEC) table is introduced, which
is also stored in the hardware-only accessible memory. These TEC table are used
to keep some attestation and configuration related information about each VM.
In particular, for each VM (as identified by its VID, which is the same VID as

2If the VM suspend reason is a hypercall then the registers are not encrypted as they are used to
pass arguments to the hypercall.

Hardware-Enhanced Security for Cloud Computing 67

used in the CIP table), the TEC table store a counter of the number of times the
VM has been suspended. Each time the VM is suspended, and before hypervisor
code gets to run and read the registers, the counter is incremented. This counter
value is also used in a cryptographic keyed-hash generated by the hardware. When
the hypervisor gets to execute, all the general purpose registers are encrypted, if it
is not a hypercall, and a special new register holds the hash value of the general
registers’ contents concatenated back-to-back. These can be stored anywhere by the
hypervisor.

When the VM is to be resumed, the hypervisor writes the register values and
the hash value into processor registers. Before VM code starts to run, the hardware
checks the values. If the hypervisor were to try to modify the register values or
the hash, the hardware can detect it when it regenerates the hash and compares the
values. Also, the hypervisor can not modify the suspend count stored in the TEC
table, thus it cannot replay an old set of register values.

Memory Oversubscription In addition to being able to share processor cores,
memory oversubscription is another key feature of many cloud computing deploy-
ments which our architecture supports. Memory ballooning [23] is a technique
for dynamically changing the allocation of memory of a guest virtual machine,
while the machine is running. Ballooning depends on the hypervisor’s ability to
dynamically change the guest physical to machine memory mapping of a VM as
it runs.

Figure 6 shows conceptually the idea of memory ballooning. As an example,
suppose a system has a total of 6 GB of memory, however, the administrator
oversubscribes memory by allocating to each of two customers up to 4 GB of
memory each for their VMs. In Fig. 6a we see that each VM initially has only 3 GB
of memory allocated and a “balloon” taking up 1 GB of memory. At runtime, the
hypervisor can cooperate with a “balloon driver” inside each VM, to change the
memory allocation. If the first VM requires more memory, the hypervisor can take
some memory pages away from the other VM (inflate its ballon) and give these
pages to the first VM (deflate its balloon). This is shown in Fig. 6b. The reverse is
shown in Fig. 6c. By adjusting the memory allocation as needed, many more VMs
can run on the system than there are actual resources.

The key operation which allows memory ballooning is the ability of the
hypervisor to change the memory allocation during a VM’s runtime, i.e., change
the page tables mapping guest physical addresses (GPA) to machine addresses
(MA). The hypervisor can change the mapping and remove pages (i.e., inflate the
balloon) or add new pages (i.e., deflate the balloon). The problem, however, is
that a malicious hypervisor may try to read the contents of the memory pages it
just removed from a VM, potentially leaking the VM’s code or data. Alternatively,
a hypervisor may try to add memory mappings such that two VMs would share
some memory pages, thus again potentially leaking code or data. The HyperWall
hardware tightly controls the type of memory update that could be performed by the
hypervisor while still allowing the hypervisor to change the guest physical address
(GPA) to machine address (MA) mapping.

68 J. Szefer and R.B. Lee

Three security requirements needed to ensure a VM’s confidentiality and
integrity protection during memory update are:

• Scrubbing of memory pages: a machine memory page that is to be freed should be
scrubbed before it becomes free and can be allocated to another VM (to prevent
leaks leading to confidentiality breaches),

• No adding of in-use pages: a VM should not be allocated machine memory pages
already in use by another VM (to prevent another VM from compromising the
confidentiality or integrity of a victim VM’s memory), and

• No swapping of pages within a VM: during the memory update, a VM’s guest
physical to machine memory page mappings should not be swapped (to prevent
integrity breaches, and potential confidentiality breaches, where the hypervisor
can swap memory contents).

To perform the memory update in HyperWall, the hypervisor specifies a new
page table mapping. It then suspends a VM, and writes a pointer to the new page
table mapping. On VM resume, the hardware can compare the page table pointer
to recognize the changed value. This triggers the memory update. Now, hardware
checks the new page tables and compares them to the contents of the CIP table.

The hardware can use the CIP table to recognize if a machine page is already
in use. The VID in the CIP table entry is used to recognize the owner VM. If a
hypervisor creates a new mapping, and assigns a new page to the VM, the hardware
can check the VID in the CIP entry for this page – if the VID is not null, then the
page is already in use and cannot be added. The update must abort. If there is no
error, the hardware can read the requested protections data for the new page, and set
the protections in the CIP table accordingly.

Fig. 6 Memory ballooning example

For pages that are to be deleted, we introduce a new “to-be deleted” bit in the
page tables; the hypervisor marks pages to be deleted with this bit and the hardware
can easily recognize which pages to delete. The hardware can compare the VIDs
to make sure the page is indeed currently in use by the VM, then it can scrub the
machine memory page and clear the CIP table entry to mark the page as free.

Hardware-Enhanced Security for Cloud Computing 69

Memory swapping attempts can be recognized by comparing the guest physical
page address (GPA) from the page tables, to the guest physical page address in
the CIP table. If the page is present in the page tables (not a new added page) the
hardware can read the CIP table entry to make sure that the machine page in the CIP
table is for the guest physical page. If this reverse mapping does not match, then
there is an attempt to swap pages and the update must be aborted.

VM Terminate

When the VM is terminated, its memory needs to be reclaimed. This can be done
by the hypervisor by issuing the new vmterminate instruction with the VID being
the identification of the VM that is to be terminated. The HyperWall state machine
intercepts this instruction and begins VM termination. The HyperWall hardware
traverses the page tables mapping to find all pages used by the VM. After each
protected page is zeroed out by hardware, its entry in the CIP table is cleared so
that this memory page can be freely accessed again. Once all the memory pages
are removed from being protected, the memory holding the protection data needs
to be unprotected. Then, the memory holding the page table mappings needs to be
unprotected as well. Finally, all the entries for the VM in the TEC table are cleared.
This clears and returns the memory as well as makes the VID number available
for another VM to use. If a hypervisor fails to issue the vmterminate instruction or
otherwise misbehaves, it remains locked out of the protected memory – this is a loss
of availability of these memory pages, but no code or data is leaked.

3 HyperWall Architecture Summary

Figure 7 shows the hardware and software modifications required to implement the
HyperWall architecture and to support the operations described above. Also, Table 1
lists the new or modified instructions used by HyperWall. The new instructions
(A), e.g. vmterminate, were introduced along with new registers (B), e.g. the
VM_suspend_hash register. A cryptographic engine (C) is needed for performing
encryption, decryption, hashing and signing (using the SKhw key). A hardware
random number generator (D) is added to support the new trng instruction used in
secure channel establishment. The bulk of the HyperWall logic is in a state machine
(E) which is responsible for updating the CIP and TEC tables when a VM is created,
updated or terminated. In particular, the state machine ensures the protections are
maintained when the memory mapping for a guest VM is updated. This is done by
the hardware mediating updates to the guest physical address to machine address
page table mappings. The TLB logic (F) is expanded to consult the CIP table
before inserting an address translation into the TLBs. To improve performance,
the access checks are done when the address translation is performed during the
handling of a TLB miss. If there is no violation, the address is cached in the TLB

70 J. Szefer and R.B. Lee

F
ig

.7
Su

m
m

ar
y

of
th

e
ha

rd
w

ar
e,

an
d

re
la

te
d

so
ft

w
ar

e,
m

od
ifi

ca
ti

on
s

in
th

e
pr

oc
es

so
r

ne
ed

ed
to

su
pp

or
tt

he
H

yp
er

W
al

la
rc

hi
te

ct
ur

e

Hardware-Enhanced Security for Cloud Computing 71

Table 1 Summary of new or modified instructions in HyperWall architecture

Instruction (Inputs) Description

generate_trust_evidence (VMID) Request current trust evidence of VM with VID
to be copied into processor registers

sign_bytes (Addr, Size) Use hardware’s private key to sign specified data
trng () Access true random number generator to

retrieve 64 bits of randomness
vmterminate (VID) For a VID, signal hardware to scrub the VM’s

memory and terminate the VM
vmlaunch () Existing instruction, modified to trigger our

HyperWall mechanisms on VM launch

and the CIP table check can be avoided in the future, for a TLB hit. To prevent
stale mappings, however, the TLBs need to be flushed whenever the CIP table are
updated. The memory controller (G) is updated with configuration registers and CIP
control logic to walk the CIP table on a hypervisor or DMA access. Similarly to the
address translation in the main processor, the I/O MMU (H) needs to have extra
logic to consult the CIP table. We re-use a portion of DRAM (I), the hardware-only
accessible memory, to store the CIP and TEC tables.

While HyperWall is a hardware architecture, the software needs to be modified to
interact with the new modified hardware. The hypervisor (J), as the entity in charge
of the platform, needs to interact with our new hardware architecture. It needs to
save and restore the new registers when VMs are interrupted and resumed (as it does
already with other state today). It needs to use a modified procedure for updating
the memory mapping during VM runtime (i.e., specify a new page table mapping,
rather than modify individual entries in the old page table mapping). During a VM’s
runtime, it needs to issue our new generate_trust_evidence instruction to read the
trust evidence data and return it to the customer when requested. When terminating
the VM, it needs to issue our new vmterminate instruction.

The guest VM (K) needs small modifications to use the trng instruction for
obtaining randomness (rather than from other means, such as from interrupts, that
could be controlled by the hypervisor). It also needs to use the sign_bytes instruction
to get information, e.g. an attestation report, signed by the hardware before sending
it to the customer. The OS should properly load code and data so that sensitive code
or data are never placed in the unprotected guest physical memory regions.

4 Trust Evidence

An interesting new feature introduced in HyperWall is the trust evidence it collects
and can provide to the customer. We already discussed how at VM launch,
the HyperWall hardware measures the VM image and the requested protections.
This information is digitally signed and can be sent back to the customer for
verification. More interestingly, however, HyperWall also performs measurements

72 J. Szefer and R.B. Lee

at VM runtime. In particular, we introduced new counters, akin to performance
counters, which keep track of attempts to violate memory protections. For each
VM, there is a set of trust evidence counters (VCNT and V MAD, described below),
stored in the Trust Evidence and Configuration table (TEC table).

As the VM runs, the hardware protects its memory from hypervisor and/or DMA
accesses (Direct Memory Access from/to I/O devices). From Fig. 8, we can see that
the hypervisor or DMA could attempt to access the VM’s memory. The hardware
intercepts and blocks such accesses (if the memory is specified to be protected in
the CIP table). Moreover, when such a malicious (or erroneous) access is detected,
the hardware counters associated with the VM are incremented. There is the VCNT
counter which keeps track of the number of attempted violations. There is also the
VMAD register, which keeps track of the last memory address where an attempted
memory access violation occurred.

These measurements are digitally signed by the hardware, again using the SKhw

key and can be sent back to the customer, upon the customer’s request. The customer
can then use this information to examine the state of the system. While the hardware
protects the VMs, if there is a large number of attempted violations, the customer
may choose to stop utilizing that VM, as something suspicious is happening on the
remote system.

Fig. 8 New trust evidence mechanisms keep track of attempts to violate memory protections.
These attestation measurements are digitally signed by the hardware and can be reported to the
customer for checking

5 Further Research Directions

HyperWall provides a significant step towards making computing in the cloud as
secure as in your own dedicated facilities. But many research challenges remain. In
particular, can computing in the cloud be made even more secure than on your own
machine?

Hardware-Enhanced Security for Cloud Computing 73

There are many other interesting and relevant threat models, where research in
hardware-enahanced security architectures could yield significant improvements in
system security. Figure 9 shows a few of these different threat models. On the left
in Fig. 9a we show a conventional trust chain, where each level of the software
stack must be trusted by the level above. This is the case today, where the hardware
is assumed trusted, the hypervisor is assumed trusted, and the OS is also trusted,
in order to run trusted software applications securely. Architectures built on this
threat model require trust in all the different software components, in addition to the
hardware. TPM [22] or ARM’s TrustZone [1] assume this threat model.

Moving to the right, Fig. 9b shows a threat model where the hypervisor is trusted,
but the OS is untrusted. A cloud provider can run a trusted hypervisor as the
virtualization layer, and try to provide protection for its customers’ applications.
But the cloud provider may not want to have to trust today’s bloated, commodity
OSes which are vulnerable to bugs. Bastion [4, 5] architecture is one example
of a hardware-software security architecture which assumes this threat model.
Bastion’s strategy is to combine software flexibility (it uses a trusted hypervisor
to protect and manage the TSMs) with hardware immutability and performance (to
protect the hypervisor). For example, Bastion’s hardware offers mechanisms for
the secure launch of the hypervisor, as well as for protecting the hypervisor during
runtime. Bastion’s trusted hypervisor in turn protects the Trusted Software Modules
(TSMs); it can securely launch TSMs during runtime, perform secure memory
management, provide secure inter-module control flow, and provide secure storage,
in addition to providing runtime memory integrity and confidentiality protection
against physical attacks. One of the key features of Bastion is its tailored attestation.
Unlike HyperWall’s trust evidence which gives information about an entire VM,
Bastion’s attestation can provide information about individual TSMs. Future work

Fig. 9 Figure showing different threat models, dark-gray components are trusted; HV is the
hypervisor, OS is the operating system, TSM is a Trusted Software Module

could look at how to partition the applications into the TSMs (something that is
currently done manually and in an ad-hoc manner today), as just one example.

Another threat model relevant to cloud computing is shown in Fig. 9c. Here the
guest OS is assumed trusted (by the customer of the virtual machine in which

74 J. Szefer and R.B. Lee

it runs), but the hypervisor may be untrusted or compromisable. This is a likely
situation for a customer who has fully tested his own trusted applications and
trusted OS, but is hoping to run this in a virtual machine to benefit from the
lower cost and flexibility of cloud computing, where he has no control of the
hypervisor. We described HyperWall as one example of an architecture which fits
this threat model. Future work could explore how to do even more layer-skipping of
untrusted software layers – yet still have a secure trust chain, by using new hardware
security mechanisms. Prior to cloud computing, hardware security architectures
explored protection of applications by hardware, but did not consider cases that
involve a hypervisor [6,10,12,18]. Also, ideas of Bastion’s tailored attestation could
be combined with HyperWall’s trust evidence to provide even better attestation
mechanisms.

In addition to providing secure cloud servers, future research should also address
security in the client devices that use cloud computing resources. Mobile devices
like smartphones and tablets are the portals into cloud computing, and can access
all kinds of important and sensitive information though the cloud. Hence, security in
client devices is an important research direction, and very relevant to secure cloud
computing.

As important as designing new hardware-enhanced security architectures is the
security testing and verification of these new architectures and new hardware-
software mechanisms. Security testing with known attacks is invaluable, but it
can only show the presence of certain security vulnerabilities – not the absence
of all exploitable vulnerabilities. Security verification tries to show that security
properties hold, or will not be violated. While it may be able to leverage some
tools from functional verification, security verification has additional requirements.
Hence, research towards a systematic methodology and tools that enable security
verification at design time can go a long way to providing better security in
tomorrow’s computing systems.

6 Summary and Further Readings

We have defined hypervisor-secure virtualization architectures and described our
HyperWall architecture as an example. HyperWall uses new hardware features to
protect the confidentiality and integrity of a VM’s memory from an untrusted or
malicious hypervisor. With HyperWall, a hypervisor, while untrusted with respect to
the confidentiality and integrity of the VMs’ memory, is still able to run and perform
management duties, such as sharing processor cores among VMs or performing
runtime memory reallocation. Having an untrusted hypervisor is an aggressive new
threat model, not previously tackled by other architectures, which almost always
assume a trusted hypervisor. Our new CIP (Confidentiality and Integrity Protection)
table and new hardware mechanisms ensure that the memory of the VMs is protected
and the untrusted hypervisor cannot maliciously alter these protections. Hence we
can allow an untrusted, commodity hypervisor to run, thus providing rich runtime

Hardware-Enhanced Security for Cloud Computing 75

functionality for the VMs. We also introduced the concept of the hardware-only
accessible DRAM memory, which is used to store the CIP table and the TEC (Trust
Evidence and Configuration) table for the VMs.

Interested readers are encouraged to read the original paper describing
hypervisor-secure virtualization [20]. Details of the HyperWall architecture are
available in a conference paper [21]. Improvements and updates, as well as
full details of the architecture, are available in [19]. Other hardware-enhanced
approaches to security are also discussed in [4–7, 10, 12, 18, 22, 24, 25].

Acknowledgements This work was supported in part by NSF grants CNS-1218817, CCF-
0917134 and EEC-0540832.

References

1. ARM, TrustZone. http://www.arm.com/products/processors/technologies/trustzone.php,
accessed April 2013.

2. VMWare. http://www.vmware.com/, accessed April 2013.
3. Xen. http://www.xen.org, accessed May 2013.
4. David Champagne. Scalable Security Architecture for Trusted Software. PhD thesis, Princeton

University, 2010.
5. David Champagne and Ruby B. Lee. Scalable architectural support for trusted software. In Pro-

ceedings of the 16th International Symposium on High Performance Computer Architecture,
HPCA, pages 1–12, 2010.

6. Jeffrey S. Dwoskin and Ruby B. Lee. Hardware-rooted trust for secure key management and
transient trust. In Proceedings of the 14th ACM Conference on Computer and Communications
Security, CCS ’07, pages 389–400, 2007.

7. Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn, Sean W.
Smith, and Steve Weingart. Building the IBM 4758 Secure Coprocessor. Computer, 34:57–66,
2001.

8. Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual
machine-based platform for trusted computing. SIGOPS Oper. Syst. Rev., 37(5):193–206, 2003.

9. Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In Proceedings Network and Distributed Systems Security Symposium,
pages 191–206, 2003.

10. Ruby B. Lee, Peter Kwan, John Patrick McGregor, Jeffrey Dwoskin, and Zhenghong Wang.
Architecture for protecting critical secrets in microprocessors. In Proceedings of the Interna-
tional Symposium on Computer Architecture, ISCA, pages 2–13, 2005.

11. Chunxiao Li, Anand Raghunathan, and Niraj K. Jha. Secure virtual machine execution under
an untrusted management OS. In Proceedings Conference on Cloud Computing (CLOUD),
pages 172–179, 2010.

12. David Lie, John C. Mitchell, Chandramohan A. Thekkath, and Mark Horowitz. Specifying and
verifying hardware for tamper-resistant software. In Proceedings of Symposium on Security
and Privacy, S&P, pages 166–177, 2003.

13. Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel rootkits
with vmm-based memory shadowing. In Richard Lippmann, Engin Kirda, and Ari Tracht-
enberg, editors, Recent Advances in Intrusion Detection, volume 5230 of Lecture Notes in
Computer Science, pages 1–20. Springer Berlin Heidelberg, 2008.

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.vmware.com/
http://www.xen.org

76 J. Szefer and R.B. Lee

14. Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert Van Doorn, John Lin-
wood Griffin, Stefan Berger, Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez,
Leendert Doorn, John Linwood, and Griffin Stefan Berger. sHype: Secure Hypervisor
Approach to Trusted Virtualized Systems. Technical Report RC23511, IBM Research, 2005.

15. Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. SIGOPS Oper. Syst. Rev.,
41(6):335–350, 2007.

16. Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-vm monitoring
using hardware virtualization. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, pages 477–487, 2009.

17. Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure virtualization
architecture. In European Conference on Computer Systems, pages 209–222, 2010.

18. G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
AEGIS: Architecture for tamper-evident and tamper-resistant processing. In Proceedings of
the 17th annual International Conference on Supercomputing, ICS ’03, pages 160–171, 2003.

19. Jakub Szefer. Architectures for Secure Cloud Computing Servers. PhD thesis, Princeton
University, 2013.

20. Jakub Szefer and Ruby B. Lee. A Case for Hardware Protection of Guest VMs from
Compromised Hypervisors in Cloud Computing. In Proceedings of the Second International
Workshop on Security and Privacy in Cloud Computing, SPCC, pages 248–252, 2011.

21. Jakub Szefer and Ruby B. Lee. Architectural Support for Hypervisor-Secure Virtualization.
In Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 437–450, March 2012.

22. Trusted Computing Group Trusted Platform Module main specification version 1.2, revision
94. http://www.trustedcomputinggroup.org/resources/tpm_main_specification, accessed April
2013.

23. Carl A. Waldspurger. Memory resource management in VMware ESX server. In 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages 181–194, 2002.

24. Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based
side channel attacks. In Proceedings of the 34th annual International Symposium on Computer
Architecture, ISCA ’07, pages 494–505, 2007.

25. Zhenghong Wang and Ruby B. Lee. A novel cache architecture with enhanced performance
and security. In Proceedings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 41, pages 83–93, 2008.

26. Zhi Wang and Xuxian Jiang. HyperSafe: A Lightweight Approach to Provide Lifetime
Hypervisor Control-Flow Integrity. In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, S&P, pages 380–395, May 2010.

27. Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits with
lightweight hook protection. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS, pages 545–554, 2009.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Cloud Computing Security: What Changes
with Software-Defined Networking?

Maurício Tsugawa, Andréa Matsunaga, and José A.B. Fortes

Abstract Broadly construed, Software-Defined Networking (SDN) refers to the
use of a standards-based open architecture and its supporting open source and open
interfaces technologies to enable the deployment, management, and operation of
networks. While traditional network management relies on vendor-specific hard-
ware, protocols, and software, SDN systems are architected to have well-defined
control and data planes offering flexible management interfaces. The enhanced
control enabled by SDN opens opportunities for better cloud security engineering.
At the same time, new vulnerabilities are potentially exposed as new technologies
are introduced. This chapter discusses how SDN impacts cloud security, and
potential risks that need to be addressed when SDN is deployed within and across
clouds.

1 Introduction

The Open Networking Foundation (ONF), a non-profit consortium that promotes
Software-Defined Networking (SDN), defines SDN as an architecture that enables
direct programmability of networks [23]. According to [17], SDN is an approach
that enables applications to converse with and manipulate the control software
of network devices and resources. Even though the SDN functionality is present
in “closed” form (as opposed to using an open architecture) in today’s network
infrastructure, the programmability of traditional network hardware is highly tied to
particular implementations by different vendors, making it difficult to realize an end-
to-end SDN. Much flexibility, compared to proprietary vendor-specific interfaces
(i.e., software packages, scripts, and APIs), is needed to unleash the full potential

M. Tsugawa (�) • A. Matsunaga • J.A.B. Fortes
Advanced Computing and Information Systems Laboratory, Department of Electrical
and Computer Engineering, University of Florida, Gainesville, FL 32611-6200, USA
e-mail: tsugawa@ufl.edu; ammatsun@ufl.edu; fortes@ufl.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__4,
© Springer Science+Business Media New York 2014

77

mailto:tsugawa@ufl.edu
mailto:ammatsun@ufl.edu
mailto:fortes@ufl.edu

78 M. Tsugawa et al.

of SDN. This flexibility can be accomplished by separating the control plane of
network hardware (e.g., switches) from the data plane as depicted in Fig. 1. As
illustrated by the OpenFlow approach [15, 21], the basic idea is to let a control
entity (software), which is physically separated from the data plane, to define how
data flows (i.e., how network messages/packets are forwarded and routed), instead of
instructing and configuring multiple independent controllers (integrated and running
in each individual network hardware – e.g., switch, router, firewall, and intrusion
detection system) as in traditional networks.

Fig. 1 Control and data plane separation in SDN (b) when compared to a traditional all-in-one
switch (a) – control is performed external to the store-and-forward hardware as opposed to an
integrated solution in traditional switches. Both control and data planes export programming APIs
(northbound and southbound, respectively), which are being standardized

In this chapter, SDN refers to the emerging network architecture that allows
flexible and vendor-independent management and operation of networks. The
needed standards and open specifications are being developed by organizations
and consortiums (e.g., Internet Engineering Task Force [10], and ONF [23]) with
participation of industry and research communities. The most popular specification,
adopted by many SDN developers, is OpenFlow [15, 21].

The enhanced control offered by SDN aligns well with cloud computing
networking needs. Due to the scale and dynamic nature of resources (physi-
cal and virtual) and users, cloud infrastructure and applications require efficient
mechanisms to rapidly change how networks operate according to how users and
applications come and go. Without SDN, cloud operators rely on a combination
of vendor-provided and in-house software to control cloud networking. Cloud
security, related to networking, is accomplished by (1) trusting the complex net-
work configuration generated manually by network administrators or management
software; and (2) isolating network management traffic from regular data, so only
cloud administrators can interact with network hardware. As SDN shifts network

Cloud Computing Security: What Changes with Software-Defined Networking? 79

management from network configuration to network “programming”, an important
question arises: from a security stand point, how do SDN-based clouds compare
to traditional (i.e., pre-SDN) clouds? Can SDN address security vulnerabilities
of traditional architecture? Do new SDN technologies expose vulnerabilities not
present in the traditional architecture? What are the mechanisms that need to be
developed or reused to secure SDN-enabled clouds?

In order to answer the above questions, this chapter discusses different aspects
of cloud security and how SDN impacts them when used in lieu of traditional
networking architectures.

2 Introduction to SDN: What Is Changing?

Today’s networking infrastructure is very complex, with a variety of vendor-
dependent mechanisms to address different problems, and inflexible (i.e., difficult
to accommodate innovations without fully upgrading hardware and software). This
fact is best illustrated by the difficulty to widely adopt the Internet Protocol version
6 (IPv6). IPv6 was developed in late 1990s, and it was meant to replace IP version 4
(IPv4) to deal with the address space exhaustion problem. However, as of 2013,
IPv6 traffic share is only around 1 % [5]. OpenFlow was initially proposed as
an academic research project, led by Nick McKeown (Stanford University) with
the goal of enabling scientists to run network experiments in real world campus
networks. As depicted in Fig. 1, the idea is to achieve vendor-independent flexibility
by clearly separating the control plane (software system that makes decisions about
where traffic is sent) and the data plane (hardware that can forward traffic at line
rate to the destination selected by the control plane). OpenFlow was developed to
be an open interface so that the communication between the control and data planes
(Southbound Interface in Fig. 1) could be standardized. With standard interfaces,
vendors would be able to implement switches that support OpenFlow without
exposing details of the internal data plane. By enabling programmability of the
network, many software engineering techniques can be applied, and the hope is
that exposing the right abstraction on upper layers (Northbound Interface in Fig. 1),
it will be possible to achieve simplicity. Interestingly, the term Software-Defined
Networking was coined by Kate Greene, a science and technology journalist,
while working on an article describing the research of Nick McKeown’s team on
OpenFlow [6]. Understandably, OpenFlow is closely related to SDN, and plays
an important role defining the Southbound Interface. An OpenFlow-enabled switch
implements a flow table, illustrated in Fig. 2, and OpenFlow protocol to access the
flow table. Each entry in flow table specifies rules to match a packet (based on
MAC address, IP address, TCP/UDP port, VLAN, and switch port) and the action
to be taken upon a match (forward the packet to particular switch port(s), drop
the packet, forward to the controller, and/or send to normal processing pipeline).

80 M. Tsugawa et al.

This functionality opens a wide range of opportunities to the controller: it is possible
to implement a broadcasting hub, learning switch, multicast, and firewall all with
line rate performance.

Fig. 2 OpenFlow version 1.0 flow table entry [14]. An OpenFlow-enabled switch can take actions
based on L2, L3, and transport layer headers flowing through the data plane

This clean and flexible architecture offered by SDN is extremely appealing for
managing networks in a cloud environment. For example, VLAN technology [12],
used in many cloud systems to keep multiple tenants isolated from each other,
requires reconfiguration of network hardware every time a VM is instantiated or
shutdown. Manual configuration by network administrators logging in to every
affected switch is impractical in a very dynamic cloud environment. Automation
requires understanding well command-line/web interfaces exposed by vendors and
writing programs/scripts to parse such interfaces, which are different for each
vendor and can change after a firmware upgrade. An open and standardized
Northbound interface illustrated in Fig. 3 will significantly simplify the integration
of network functions in cloud middleware: (1) the cloud middleware consults its
database to check which VMs (VM1, VM2, and VM3) belong to a particular tenant
(Tenant_A), and where those VMs are running (physical host and/or SDN switch
that each VM is connected); (2) the cloud middleware invokes a SDN Northbound
API to create a VLAN (VLAN_A) and connect the tenant’s VM on the new
VLAN; (3) the SDN controller computes the necessary Southbound instructions and
contacts the affected SDN switches. Moreover, using SDN mechanisms it would be
possible to implement VLAN-like functionality without the 4096 ID limit of IEEE
802.1Q standard: for example, isolation can be enabled by allowing communication
only among media access control (MAC) addresses of a particular tenant (this would
entail the SDN controller to compute rules based on MAC addresses to be placed
on switches).

SDN has attracted interest from both industry and academia, leading to the
release of many controllers, and OpenFlow-enabled hardware/software. Many
believe that SDN is applicable not only for campus networks (as initially designed),
but everywhere. While studies and deployments of SDN across wide-area networks
(WAN) exist [9, 11, 28], there is currently low interest in applying the technology

Cloud Computing Security: What Changes with Software-Defined Networking? 81

Fig. 3 Example of how cloud middleware uses SDN interfaces to control the network. The figure
illustrates that VLAN management can be achieved by simply invoking a Northbound API exposed
by a SDN controller. Southbound instructions to achieve the desired functionality are computed and
transmitted by the SDN controller

in the Internet core. As further discussed in the next sections, security aspects
(especially user authentication and access control) are not yet defined for SDN,
and in the Internet core where multiple providers/administrative domains are
traditionally organized as “independent” autonomous systems (AS), the open access
and logically centralized view of the network will require further development to
deal with multiple potentially conflicting interests. As illustrated in Fig. 4, SDN
deployments concentrate on the edge of the Internet within a single administrative
domain. The majority of deployments are within a private LAN, with SDN replacing
the traditional network management/operation and offering agile reconfiguration
mechanisms to deal with and implement policies for the Bring Your Own Device
(BYOD) movement. In larger deployments (in a datacenter, campus or enterprise
networks), different network services such as firewalls (higher performance as rules
are distributed among switches and processed at line rate, instead of concentrating
on a single appliance with potential packet processing speed limitations) and
quality-of-service differentiation (offer different network paths favoring bandwidth
or latency) are cleanly implemented. WAN deployments require dedicated links
across sites and are typically under a single administrative domain. A typical
application in this scenario is to best utilize the network infrastructure and provide
resiliency given the deterministic knowledge offered by the SDN logical central
controller.

82 M. Tsugawa et al.

Fig. 4 SDN deployment domains

3 Cloud Security with SDN: Opportunities
and Vulnerabilities

SDN and OpenFlow development has mainly focused on improving network
functionality (e.g., by adding network programmability). An increase in functions
or features represents a larger surface area where exploitable weakness can exist
(less security), and also a system that is more difficult to use since users will need
to understand and learn a larger set of functions (less useable) – this fact is well
illustrated in the Security/Functionality/Ease-of-use triad as in Fig. 5 [34]. From a
networking perspective, the most secure system is the one that is not connected –
i.e., zero functionality and completely unusable. Too much security will make the
system very difficult to use, and too much functionality will make it difficult to
track all potential vulnerabilities (this is well exemplified by the high number of
vulnerabilities in computer operating systems). Readers should consider two points
going through the next subsections discussing cloud security with SDN: (1) every
aspect, including the ones intuitively unrelated, affects security; and (2) given the
trade-off, a compromise needs to be found for an acceptable level of security.

Fig. 5 Security/
Functionality/ Ease-of-use
triad

Cloud Computing Security: What Changes with Software-Defined Networking? 83

3.1 Network Management Complexity and Change
in Personnel

Without SDN, network administrators are forced to use non-standardized APIs and
develop in-house software and scripts to configure the network. Writing such pro-
gram is an error-prone activity, which reflects the complexity of today’s networks.
SDN will not reduce the complexity of networks – i.e., the large number of devices
to manage, and the large number of protocols to support will remain unchanged
or keep growing – and SDN programming is expected to be equally error-prone.
However, with the adoption of standardized interfaces (such as OpenFlow, which
one can view as “network” instruction set), network “programs” should become
more readable to a larger number of developers/administrators, which will help
the debugging process and trustworthiness of network management codes. This is
particularly important when change in personnel takes place. Typically, a network
administrator that inherits a network decides to develop management tools and
scripts from scratch. The main reasons are: (1) the inherited configuration is not
well documented, and (2) previous administrators may have left back doors that
would compromise security.

It is expected that new abstractions will be created (through the Northbound
interfaces) so that users will not need to deal with the complex low-level Southbound
interfaces. Many researchers advocate that applying software engineering and
creating the correct abstractions will lead to a simpler system, enabling easier
debugging [8] and use of formal verification techniques [32].

3.2 Autonomous Systems Versus Logically
Centralized Management

SDN advocates a logically centralized management of networks (i.e., global
network view), in which a controller (or a collaborating set of controllers) operates
and defines the flow of data. With Autonomous Systems (AS), an administrator of
a particular domain can focus in protecting its own site, with little interaction with
a limited number of neighboring AS. The global network view approach of SDN
raises obvious scalability concerns, but researchers believe that scalability is not
going to be a problem since while the data plane operates at line rate (Gbps), the
control plane exchanges messages at a much lower rate. The global view, however,
requires a well-defined model for collaboration and federation – how network
resources are programmed, what can be programmed, and who can program. In
a scenario where multiple users/cloud tenants share the network infrastructure, the

84 M. Tsugawa et al.

boundaries of what each user of network programs can do need to be well defined.
Creating a hierarchical structure where the SDN domain can delegate limited
functionality to its tenants is a possible evolution when dealing with the logical
central control. This issue is closely related to intercloud security as discussed in [2].

3.3 Restricted Management Access Versus
Open Management Access

Management networks are traditionally isolated, often times physically, from
regular network traffic. Even if access to configuration of network devices is done
through insecure mechanisms, the infrastructure would be protected from attackers
since only network administrators have access to the management network. SDN
can be deployed in a similar way so that only network administrators have access
to programming interfaces. Security in this case depends on how well network
administrators can operate the infrastructure, and it is independent whether or not
SDN is used. However, the SDN vision is to allow applications and end users
interact directly with the network, the same way they interact with compute and
storage resources. Thus, mechanisms to control access to programming interfaces
and coordinate the use of network resources become necessary. Currently, the
majority of deployments consider the SDN to be isolated from the data network.
Much research and development are still needed, but some features can be seen
in network operating systems (e.g., NOX [7, 20]) and network “hypervisors” (e.g.,
FlowVisor [29, 30]).

3.4 Isolation Among Users/Tenants

Cloud providers make use of several techniques to achieve maximum isolation
among users (or tenants), including firewall configurations and use of VLANs. For
example, in the advanced networking model of CloudStack [1] (an open-source
Infrastructure-as-a-Service cloud middleware), each user is assigned an independent
VLAN. VLAN technology [12] allows multiple isolated broadcast domains to co-
exist in a LAN, and a specific VLAN header (tag) is processed by switches. SDN
can make the complex management of VLANs more controllable (i.e., through the
use of standard interfaces), or alternatively, achieve tenant isolation using SDN
programming. SDN controllers can implement firewall rules since they control how
packets/frames flow through the data plane. The level of isolation will depend on
how well SDN programs are written.

From a performance perspective, cloud resource sharing is susceptible to denial-
of-service attacks by exhaustion. An attacker can potentially deny CPU or disk I/O
to other users by putting an extremely high load on shared resources. Similarly, an
attacker can try to congest the network sending unnecessary messages, or attack the

Cloud Computing Security: What Changes with Software-Defined Networking? 85

machine running the SDN controller. There are two arguments that support SDN
to better handle such attacks: (1) it is possible to quickly detect such patterns and
isolate the traffic so regular users are unharmed; and (2) modern switches can handle
line rates (1 Gbps or 10 Gbps) per port, and SDN can group flows or traffic per port.

3.5 Response to Attacks

SDN has two main advantages over traditional networks in regards to detection
and response to attacks: (1) the (logically) centralized management model of SDN
allows administrators to quickly isolate or block attack traffic patterns without
the need to access and reconfigure several heterogeneous hardware (switches,
routers, firewalls, and intrusion detection systems); (2) detection of attacks can
be made a distributed task among switches (SDN controllers can define rules on
switches to generate events when flows considered malicious are detected), rather
than depending on expensive intrusion detection systems. SDN can also be used
to control how traffic is directed to network monitoring devices (e.g., intrusion
detection systems) as proposed in [31]. Quick response is particularly important in
highly dynamic cloud environments. Traditional intrusion detection systems (IDS)
mainly focus on detecting suspicious activities and are limited to simple actions such
as disabling a switch port or notifying (sending email) to a system administrator.
SDN opens the possibility of taking complex actions such as changing the path of
suspicious activities in order to isolate them from known trusted communication.
Research will focus on how to recast existing IDS mechanisms and algorithms
in SDN contexts, and development of new algorithms to take full advantage of
multiple points of action. For example, as each switch can be used to detect and act
on attacks, [16] has shown the improvement of different traffic anomaly detection
algorithms (Threshold Random Walk with Credit Based rate limiting, Maximum
Entropy, network traffic anomaly detection based on packet bytes, and rate limiting)
using Openflow and NOX by placing detectors closer to the edge of the network
(home or small business networks instead of the ISP) while maintaining the line
rate performance.

3.6 Network Statistics Monitoring

While mechanisms to access network statistics data from switches and routers are
available (e.g., using Simple Network Management Protocol – SNMP [4]), such
data are rarely made available to end users. SDN switches are designed to match
flows (based on MAC, IP, switch port, VLAN, etc.) and process the flows according
to rules defined by a controller. The hardware used to match flows has built-in
performance counters, which are also exposed through programming interfaces.
These counters can be used to define matching rules based on either statistics

86 M. Tsugawa et al.

or fine-grain monitored network data. By leveraging this feature, service level
agreements (SLA) between cloud providers and users can be made easier to manage.
With a reliable source of statistics data, cloud providers and users can both verify
when and how a network-related SLA has been violated.

3.7 Data Confidentiality

Confidentiality is very challenging to achieve at the network level. First, the
network always knows the source and destination of packets (otherwise it would
not know how to route messages), and second, if encryption is implemented
at the network level, users would need to trust the network devices. True end-
to-end data confidentiality can be only accomplished if secrets (i.e., encryption
keys) are only known to the source and destination parties. SDN is unlikely to
offer confidentiality or encrypted communication since there are many validated
application level protocols that ensure data confidentiality. Applications could (and
should) continue to rely on traditional methods when processing sensitive data.

3.8 VM Migration

The use of VM migration intra- and inter-clouds has been actively investigated
due to its potential to offer better cloud resource management. Complex network
reconfigurations (in traditional networks), or programs (in SDN) are needed when a
VM moves from one server to another – i.e., to keep the same VLAN configuration,
access, and firewall policies unchanged. The complexity increases depending on
the migration distance, i.e., in increasing order: within a rack (same switch), across
racks, across server rooms, across buildings, and across WAN. Realizing a SDN-
based WAN requires further research, as already exemplified by the RouteFlow [18]
SDN switch-based architecture. As SDN evolves and gets deployed, more network
programs and interfaces supporting VM migration will be made available. SDN
mechanisms could be used to isolate the traffic related to VM migrations, potentially
leading to improved security. However, attackers may also take advantage of SDN
mechanisms to reroute and gain access to VM migration traffic, thus, the VM
migration process itself will still need to use appropriate and secure application-
layer protocols.

3.9 Reliability

With traditional network switches, failure in any component would affect only a
partial part of the entire network. In particular, failure of a management server,
which is used to communicate with switches and routers when configuration

Cloud Computing Security: What Changes with Software-Defined Networking? 87

changes are needed, minimally affects the operation of the network since it will only
prevent new configurations to be propagated. In a cloud, it could prevent accepting
new users (if a VLAN needs to be created), but running systems will continue to
work. Failure of a SDN controller can potentially have catastrophic consequences –
in the worst case, the network can completely shutdown.

3.10 Opportunities for Attackers

SDN exposes new interfaces to control and operate the network, which can be
potential source of security risks. If communication between control plane and data
plane is not properly secured (e.g., physically isolated communication channels,
or use of secure channels and protocols), security of the entire network can be
easily compromised. Moreover, as discussed above, a compromised controller can
affect the security of the entire network, so SDN controllers and their access control
policies need to be carefully designed and implemented. As low level network
functions and services are exposed to more users, attacks that are difficult or
impractical for regular users may become possible once SDN is available (e.g.,
while in traditional networks interception of packets to perform man-in-the-middle
attacks would require privileged access to network devices, with SDN it can be
potentially achieved through interactions with the controller). SDN controllers run
on traditional computers that are known to have exploits. Securing properly these
points of entry will be essential for maintaining the security currently dependent on
network configurations.

4 SDN/OpenFlow Security Research

SDN research has been centered on the development and unveiling of a new
networking paradigm, the definition of flexible management/programming inter-
faces, and the implementation of prototypes and simulators to attract the interest
of network hardware vendors. The success of these activities is well illustrated in
presentations and tutorials from Open Networking Summit events [24], and while
security aspects of SDN have not yet received full attention, an increasing body of
research work is becoming available. A snapshot of this work, at the time of writing
of this chapter, is discussed below.

Researchers from SRI International and Texas A&M University maintain the
OpenFlowSec website [22], where solutions to SDN security challenges are made
available through reference implementations, papers, presentations and demon-
strations. The group has developed tools that can help experts to study different
aspects of OpenFlow security. FORT-NOX [26] extends the NOX OpenFlow

88 M. Tsugawa et al.

controller platform [7] implementing a security kernel that mediates OpenFlow rule
insertion requests by applications. The FORT-NOX security policy enforcement
kernel implements a rule-conflict detection engine that, in conjunction with a
role-based authorization mechanism, decides whether OpenFlow rule insertions or
deletions should be accepted or not. FRESCO is a security application development
framework for OpenFlow-based SDN. The FRESCO scripting language makes it
possible to write security applications with fewer lines of source code compared
to writing OpenFlow applications from scratch, enabling developers to focus on
security aspects of OpenFlow applications.

Tools to develop OpenFlow or OpenFlow-based security applications, closely
related to OpenFlowSec, have also been studied by different researchers. FlowVisor
[29] uses network slicing to create multiple logical networks, and evaluates
OpenFlow rule conflicts between the logical networks. The Resonance architecture
[19] recognizes the need for fine-grained security policies that can be changed
dynamically in response to network monitoring, and implements a security system
that tracks different states of each host to apply security policies accordingly.
Researchers in [27] propose the development of network programming language
abstractions to help guarantee the consistency of rules in SDNs.

Research on how to recast existing security mechanisms using the SDN paradigm
has also been conducted. The work in [33] is the most relevant to this article as it
touches two services offered by Amazon Elastic Compute Cloud (EC2): elastic IP
and security groups. An elastic IP is a static IPv4 address leased by Amazon to a
particular cloud user that can be programmatically mapped to an instance (a VM).
Security groups are groups of EC2 instances (an instance can belong to one or more
security groups) to which users can assign firewall rules. Authors show in [33] how
these two services can be implemented using OpenFlow mechanisms, and also how
they can be integrated into existing open source cloud middleware.

Authors in [35] propose the use of OpenFlow mechanisms to improve the
security of guest WiFi services, more specifically the separation of authentication,
access, and accounting. A prototype of OpenWiFi is implemented using off-
the-shelf WiFi access points (APs) with modified firmware in order to make
them OpenFlow-enabled APs. The OpenFlow ability to collect flow statistics is
highlighted in this work for improved accounting.

An interesting approach to uncover and mitigate cyberthreats is the use of
“Big Data Security” [25]. The key idea is to treat the entire network traffic of
an organization as Big Data (i.e., a very large and complex data set from which
traditional analysis tools are unable to efficiently extract useful information), and
use Big Data mechanisms to implement security solutions. Piper [25] introduces
security intelligence and analytics (SIA), by Solera Networks, as a potential
solution. SIA captures every packet and flow that traverses a network, and can
potentially detect threats that would be impossible using traditional solutions. It
is expected that SDN can further improve the performance and functionality of Big
Data security solutions such as SIA.

Cloud Computing Security: What Changes with Software-Defined Networking? 89

5 Needed SDN Research and Development
for Cloud Security

As SDN moves from configuration of network devices to the notion of programming
the network, and the idea of a “network” instruction set can be conceptualized.
OpenFlow specification mainly focuses on this layer, defining what and how the
control plane interacts with the data plane. Similar to computer architecture where
stand-alone applications directly access the hardware without operating system
control, it is possible to directly use the network instructions to implement stand-
alone SDN controllers – which are the majority of OpenFlow controllers currently
available, and sufficient for small deployments (Fig. 6). Even with this simple setup
many SDN aspects can be studied: how the controller should be protected against
external attacks, how to properly isolate the control messages from the data plane,
what is the right set of “network instructions” to be exposed, how many switches
a single controller can handle, how to implement a distributed controller, among
others.

Fig. 6 Stand-alone SDN controller

In a cloud environment, it is likely that multiple controllers will be needed
to accommodate the different, and often conflicting, needs among providers,
system administrators, and end users. A network operating system (NOS) that can
coordinate multiple applications and resolve potential conflicts (e.g., as proposed in
[26]) is then needed (Fig. 7). Security studies should then focus on the NOS layer:
what is the appropriate set of interfaces exported by a NOS, does a function expose
vulnerabilities, how well each application is isolated from each other. Lessons
learned from years of computer operating systems development should be leveraged.

Further, network hypervisors that are able to coordinate the action of multiple
network operating systems (e.g., FlowVisor [29]) would enable maximum flexibility
in network programming. Similar to computer systems, every layer needs security
considerations (Fig. 8).

90 M. Tsugawa et al.

Application Application

Control Plane

Data Plane

Hosts

“Network” Operating System

. ..

. ..

“Network” Instructions Set

Fig. 7 Network operating system

SDN is a step forward to realize the vision of fully virtualized datacenters,
campus-based networking test beds and networked sandboxes offering missing net-
work virtualization services to clouds. As an emerging technology, much research
and development are needed to understand its security implications. Making
an analogy with machine virtualization, virtual networking services, as needed
by cloud providers, users, and middleware, can be developed using a layered
architecture as illustrated in Fig. 8. The data plane/network instruction set needs
to be able to securely accept and execute commands/instructions from the control
plane. Substantial effort has been spent in making open specifications for the data
and control planes interface, with much focus on flexibility and less on security.
Many argue that this interface needs to be physically isolated and secured, and only
accessed by trusted controller, network OS, or hypervisor.

Fig. 8 Network virtualization using SDN

Cloud Computing Security: What Changes with Software-Defined Networking? 91

In the control plane, sophisticated authentication and access control are needed.
In deployed clouds there already exists a user base, with well defined mapping
between resources and users. For example, in an IaaS cloud, the mapping between
a given user and running VMs is clear. Network hypervisors will need to restrict
the actions of a controller to a particular set of VMs. This task becomes much
more complex when multiple clouds are involved [3, 13], and solutions to cloud
federation/collaboration should be leveraged.

6 Conclusions

This chapter discusses software-defined networking and its impact on cloud com-
puting security. As SDN changes network management from device configuration to
network programming, it exposes a large amount of interfaces with potential secu-
rity vulnerabilities. If SDN is just used as a better technology to operate networks
and interfaces are physically restricted to system and network administrators, sub-
stantial changes to cloud network management security are not expected. Assuming
that SDN programming is properly done, security of network management will
remain the same with similar vulnerabilities and threats. Many deployments will
follow the administrators-only network management model, at least in the initial
phases of SDN deployment. As SDN matures, mechanisms to securely expose SDN
programmability to a wider range of users will be needed, and increasingly complex
security considerations will be incorporated into SDN design. The security topics
discussed in this paper, while not exhaustive, are the ones that the authors feel in
need of immediate attention.

Configuration and operation of networks is a complex and error-prone activity
with or without SDN. Unintended security vulnerabilities will continue to exist
and even increase in certain scenarios since SDN promotes a larger community
to be involved in interacting with the network control plane. At the same time,
the flexibility in manipulating low level network components offered by SDN will
enable the development of new ways of improving security not possible before.
Security highly depends on how network programs are implemented. Similar to
computer programs, high quality secure programs and badly implemented and
insecure programs will co-exist.

A layered approach similar to computer systems can be used to coordinate the
sharing of network programming responsibilities among multiple users, admin-
istrators, and middleware. The programming interfaces in the data plane can be
considered a “network” instruction set, with network hypervisors coordinating
multiple network operating systems, which in turn offer services to multiple
applications. Each layer will need to be appropriately secured.

Still, access to network services will need to be well controlled and coordinated,
so that applications do not interfere with each other. Therefore, a complex control
of users is needed, and federation and interoperation challenges similar to the ones
faced by clouds emerge. SDN should be included in the intercloud discussion,

92 M. Tsugawa et al.

as it can take advantage of the sophisticated authentication and authorization
mechanisms, and in turn, offer a flexible networking environment for improved and
secure cloud experiences.

Acknowledgements This work is supported in part by National Science Foundation (NSF)
grants No. 0910812, 1139707, 1240171 and the AT&T Foundation. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF, and AT&T Foundation.

References

1. Apache CloudStack Project. http://www.cloudstack.org. Cited 14 June 2013.
2. Bernstein D and Vij D (2010) Intercloud Security Considerations. In 2010 IEEE Second

International Conference on Cloud Computing Technology and Science (CloudCom). 537–44.
IEEE, Indianapolis, USA. doi:10.1109/CloudCom.2010.82.

3. Bernstein D, Ludvigson E, Sankar K, Diamond S, and Morrow M (2009) Blueprint for
the Intercloud - Protocols and Formats for Cloud Computing Interoperability. In Fourth
International Conference on Internet and Web Applications and Services 2009 (ICIW ’09).
328–36. Venice/Mestre. doi:10.1109/iciw.2009.55.

4. Case JD, Fedor M, Schoffstall ML, and Davin J (1990) A Simple Network Management
Protocol (SNMP). IETF RFC 1157, 1–36.

5. Google - IPv6 statistics. http://www.google.com/intl/en/ipv6/statistics.html. Cited 14 June
2013.

6. Greene K (2009) TR10: Software-Defined Networking. Technology Review (MIT). http://
www2.technologyreview.com/article/412194/tr10-software-defined-networking/. Accessed
14 June 2013.

7. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N et al. (2008) NOX: towards an
operating system for networks. ACM SIGCOMM Computer Communication Review 38, 105–
10. doi:10.1145/1384609.1384625.

8. Handigol N, Heller B, Jeyakumar V, Maziéres D, and McKeown N (2012) Where is the
debugger for my software-defined network? In Proceedings of the first workshop on Hot topics
in software defined networks. Vol. pp. 55–60, ACM, Helsinki.

9. Hölzle U (2012) OpenFlow@Google. Open Networking Summit 2012. http://www.youtube.
com/watch?v=VLHJUfgxEO4. Accessed 14 June 2013.

10. Internet Engineering Task Force. http://www.ietf.org. Cited 14 June 2013.
11. Internet2 (2012) Internet2 Innovation Platform FAQ. Internet2. http://www.internet2.edu/pubs/

Internet2-Innovation-Platform-FAQ.pdf. Accessed 14 June 2013.
12. Interworking Task Group of IEEE 802.1 (2011) IEEE Standard for Local and metropoli-

tan area networks–Media Access Control (MAC) Bridges and Virtual Bridged Local
Area Networks. IEEE Std 802.1Q-2011 (Revision of IEEE Std 802.1Q-2005) 1–1364.
doi:10.1109/ieeestd.2011.6009146.

13. Keahey K, Tsugawa M, Matsunaga A, and Fortes JAB (2009) Sky Computing. In IEEE Internet
Computing. Vol. 13, pp. 43–51.

14. McKeown N (2008) Why can’t I innovate in my wiring closet? The Stanford Clean Slate
Program. http://www.openflow.org/documents/OpenFlow.ppt. Accessed 14 June 2013.

15. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J et al. (2008)
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 69–74. doi:10.1145/1355734.1355746.

http://www.cloudstack.org
http://www.google.com/intl/en/ipv6/statistics.html
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.youtube.com/watch?v=VLHJUfgxEO4
http://www.youtube.com/watch?v=VLHJUfgxEO4
http://www.ietf.org
http://www.internet2.edu/pubs/Internet2-Innovation-Platform-FAQ.pdf
http://www.internet2.edu/pubs/Internet2-Innovation-Platform-FAQ.pdf
http://www.openflow.org/documents/OpenFlow.ppt

Cloud Computing Security: What Changes with Software-Defined Networking? 93

16. Mehdi SA, Khalid J, and Khayam SA (2011) Revisiting traffic anomaly detection using
software defined networking. In Proceedings of the 14th international conference on Recent
Advances in Intrusion Detection (RAID’11). 161–80. Springer-Verlag, Menlo Park, CA.
doi:10.1007/978-3-642-23644-0_9.

17. Nadeau T and Pan P (2011) Software Driven Networks Problem Statement. IETF Internet-
Draft (work-in-progress) draft-nadeau-sdnproblem-statement-01.

18. Nascimento MR, Rothenberg CE, Salvador MR, Corrêa CNA, Lucena SCd, and Magalhães
MF (2011) Virtual routers as a service: the RouteFlow approach leveraging software-defined
networks. In Proceedings of the 6th International Conference on Future Internet Technologies.
34–7. ACM, New York, NY, Seoul, Republic of Korea. doi:10.1145/2002396.2002405.

19. Nayak AK, Reimers A, Feamster N, and Clark R (2009) Resonance: dynamic access control
for enterprise networks. In Proceedings of the 1st ACM workshop on Research on enterprise
networking. 11–8. ACM, doi:10.1145/1592681.1592684.

20. NOX OpenFlow Controller. http://www.noxrepo.org. Cited 14 June 2013.
21. OpenFlow. http://www.openflow.org. Cited 14 June 2013.
22. OpenFlowSec. http://www.openflowsec.org. Cited 14 June 2013.
23. Open Networking Foundation. http://www.opennetworking.org. Cited 14 June 2013.
24. Open Networking Summit. http://www.opennetsummit.org. Cited 14 June 2013.
25. Piper S (2013) In Big Data Security for Dummies. John Wiley & Sons, Inc.
26. Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, and Gu G (2012) A security

enforcement kernel for OpenFlow networks. In Proceedings of the first workshop on Hot
topics in software defined networks. 121–6. ACM, New York, NY, Helsinki, Finland.
doi:10.1145/2342441.2342466.

27. Reitblatt M, Foster N, Rexford J, and Walker D (2011) Consistent updates for software-defined
networks: Change you can believe in! In Proceedings of the 10th ACM Workshop on Hot Topics
in Networks. ACM, Cambridge. doi:10.1145/2070562.2070569.

28. Rothenberg CE, Nascimento MR, Salvador MR, Corrêa CNA, Lucena SCd, and Raszuk R
(2012) Revisiting routing control platforms with the eyes and muscles of software-defined
networking. In Proceedings of the first workshop on Hot topics in software defined networks.
13–8. ACM, Helsinki, Finland. doi:10.1145/2342441.2342445.

29. Sherwood R, Gibb G, Yap K-K, Appenzeller G, Casado M, McKeown N et al. (2009)
FlowVisor: A Network Virtualization Layer. OpenFlow Switch Consortium, Tech. Rep.
OPENFLOW-TR-2009-1.

30. Sherwood R, Gibb G, Yap K-K, Appenzeller G, Casado M, McKeown N et al. (2010) Can the
Production Network Be the Testbed? In 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 365–78. USENIX Association, Vancouver, BC, Canada.

31. Shin S and Gu G (2012) CloudWatcher: Network security monitoring using OpenFlow in
dynamic cloud networks (or: How to provide security monitoring as a service in clouds?).
In 2012 20th IEEE International Conference on Network Protocols (ICNP). 1–6. Austin, TX.
doi:10.1109/icnp.2012.6459946.

32. Skowyra R, Lapets A, Bestavros A, and Kfoury A (2013) Verifiably-Safe Software-Defined
Networks for CPS. In Proceedings of the 2nd ACM International Conference on High
Confidence Networked Systems (HiCoNS 2013), Philedelphia, PA, USA. ACM, Philadelphia.

33. Stabler G, Rosen A, Goasguen S, and Wang K-C (2012) Elastic IP and security groups
implementation using OpenFlow. In Proceedings of the 6th international workshop on
Virtualization Technologies in Distributed Computing Date. ACM, Delft, The Netherlands.
doi:10.1145/2287056.2287069.

34. Waite A (2010) InfoSec Triads: Security/Functionality/Ease-of-use. http://blog.infosanity.co.
uk/2010/06/12/infosec-triads-securityfunctionalityease-of-use/. Accessed 14 June 2013.

35. Yap K-K, Yiakoumis Y, Kobayashi M, Katti S, Parulkar G, and McKeown N (2011)
Separating authentication, access and accounting: A case study with OpenWiFi. Technical
report, OpenFlow 2011-1.

http://www.noxrepo.org
http://www.openflow.org
http://www.openflowsec.org
http://www.opennetworking.org
http://www.opennetsummit.org
http://blog.infosanity.co.uk/2010/06/12/infosec-triads-securityfunctionalityease-of-use/
http://blog.infosanity.co.uk/2010/06/12/infosec-triads-securityfunctionalityease-of-use/

Proof of Isolation for Cloud Storage

Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing

Abstract Cloud services help users reduce operational costs by sharing the hard-
ware resources across multiple tenants. However, due to the shared physical
resources, malicious users can build covert channels to leak sensitive information
(e.g., encryption keys) between co-resident tenants. Cloud service providers have
proposed to mitigate these concerns by offering physically isolated resources;
however, cloud users have no ways to verify the actual configuration and level of
the resource isolation. To increase the observability of disk storage isolation, we
introduce two Proof of Isolation (PoI) schemes that enable cloud users to verify
separated disk storage and dedicated disk storage, respectively. Our experimental
results show that our PoI schemes are practical in both private and public cloud
environments.

1 Introduction

As the cloud service becomes more popular to help users reduce operational costs
and simplify technical management, it gains greater adoption across enterprises,
government agencies, and individuals. Gartner’s report [27] indicates that global
spending on public cloud services is expected to grow 18.6 % in 2012 to $110.3 bil-
lion, and the total market is expected to grow to $210 billion in 2016. Cloud
providers deliver their services in a scalable way by sharing the infrastructures,

Z. Wang (�) • J. Jing
State Key Laboratory of Information Security, Institute of Information Security, Chinese
Academy of Sciences, 87A Minzhuang Road, Beijing 100093, China
e-mail: zwang@lois.cn; jing@lois.cn

K. Sun • S. Jajodia
Center for Secure Information Systems, George Mason University, Fairfax,
VA 22030-4422, USA
e-mail: ksun3@gmu.edu; jajodia@gmu.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__5,
© Springer Science+Business Media New York 2014

95

mailto:zwang@lois.cn
mailto:jing@lois.cn
mailto:ksun3@gmu.edu
mailto:jajodia@gmu.edu

96 Z. Wang et al.

platforms, and applications across multiple tenants. Meanwhile, the vulnerability of
shared technology is among the top nine critical threats to cloud security according
to a Cloud Security Alliance (CSA) report [17]. Sensitive information could be
compromised through the covert channels built upon the shared CPU cache [49],
memory bus [47], and hard disks [34, 43] in the cloud. For instance, a malicious
virtual machine (VM) is capable of retrieving the encryption keys from a victim
VM hosted on the same physical machine [53].

To ease the security concerns on co-resident data, cloud service providers (CSPs)
are motivated to offer physically isolated resources to certain users who have high
security requirements. Nowadays a correct deployment of isolation configuration
solely relies on the Service Level Agreements (SLAs) signed between a CSP and
its users. If the CSP violates the commitments in the SLAs either accidentally or
intentionally, the users may not detect those violations until actual economic loss
has occurred. Therefore, it is critical to investigate technical approaches that enable
the users to verify the commitments in the SLAs.

Two factors enormously increase the difficulties on verifying the SLAs in the
cloud. First, the CSP has no motivation to provide sufficient supports for its users
to verify its SLA commitments. Therefore, the users may have to perform the SLA
verification independently against untrusted and/or uncooperative CSPs. Second,
the cloud users merely have a logical view of their resources in the cloud due to
the abstraction layer or the business model of cloud computing [31]. Researchers
have proposed a number of techniques on verifying SLA commitments such as fault
tolerance [11], geographical replication [8, 46], confidentiality [22], integrity [5],
and VM isolation [52]. However, the research on verifying the disk storage isolation
remains an open problem in the cloud.

In this chapter, we introduce two Proof of Isolation (PoI) schemes for cloud users
to verify the actual implementation of storage isolation without any cooperation
from CSPs. We first formalize two storage isolation requirements, separation and
dedication. Separation requires that the data owned by two users with conflict
of interests should be physically isolated on different storage devices (e.g., hard
disks). Note that access control policies (e.g., Chinese Wall Security Policy [13])
cannot guarantee a complete isolation due to the covert channels on disk storages.
Dedication requires that a physical storage device can only be used to save the data
for one user, who does not want to share the underlying storage device with any
other users.

We propose two PoI schemes for separation verification and dedication verifi-
cation. The basic idea of the separation verification scheme [43] is to measure the
time for simultaneously accessing the conflicting files. When the conflicting files
are stored on the same hard drive, the reading time is longer than that when they are
on different hard drives, mainly due to the contentions of I/O resources. We propose
TerraCheck [44], a dedication verification scheme, to help cloud users verify if the
unallocated disk space on a hard disk has been occupied by undesired users. It places
shadow data on the unallocated disk space and verifies the dedication by detecting
the changes to the shadow information.

Proof of Isolation for Cloud Storage 97

The rest of this chapter is organized as follows. Section 2 discusses the threat
model. We formalize the isolation requirements on cloud disk storage in Sect. 3.
Sections 4 and 5 present the two proof of isolation schemes on separation and
dedication, respectively. Section 6 discusses the related work on remote verification
in the cloud. Section 7 concludes this chapter.

2 Threat Model

Covert channels against the shared disk can be effectively prevented by storing
the two conflict-of-interest files on two separated or dedicated hard disks. Both
separation and dedication requirements on cloud storage can be enforced by the
commitment terms in SLAs. However, a misbehaved cloud provider may fail to
meet such requirements due to economic considerations or accidental configuration
errors. For instance, even if two conflicting files are required to be put onto two hard
disks, the cloud provider may instead store them on the same hard disk.

We consider the misbehaved cloud service providers as honest-but-greedy.
Honest means that the CSPs are not motivated to corrupt user’s data or violate the
data privacy with respect to the business reputation. However, the CSPs may be
greedy for either storing conflicting data on the same storage disk or allocating the
storage not in use by the dedicated user to other users. Consequently, the security
and privacy of the existing user’s data may be threatened by the co-resident users
through exploiting covert channels to retrieve encryption keys [53], obtain other
sensitive information [34], or violate the access control policy [43].

3 Cloud Storage and Storage Isolation Requirements

A cloud infrastructure includes two basic types of storage: direct attached storage
and network based remote storage. As shown in Fig. 1, the direct attached storage is
the storage media attached to each virtual machine, and the remote storage devices
can be accessed by users through Internet (dashed arrow) or by the VMs through
the internal network (solid arrow) within the cloud datacenter.

For both types of storage, the resources of cloud storage service can be viewed as
a large set of physical storage devices S. The number of storage devices is |S|, and
P (S) is the power set of S. Suppose one user u stores n files Du = {d1

u ,d
2
u , . . . ,d

n
u}

to |S| devices, where n > 0. Storage placement for user u can be characterized by a
function f : Du→P (S) that maps the set of files Du into the set of physical storage
devices S. Note one file may be mapped to more than one storage devices.

Separation: To remove the covert channels, the conflict-of-interest datasets should
by physically separated on different storage devices, and we call this requirement as

98 Z. Wang et al.

Separation. Suppose user u has a conflicting file set Cu,v with user v, where Cu,v =

{(di
u, d j

v)| di
u hasconflictswith d j

v , di
u ∈ Du, d j

v ∈Dv}, separation requires that

∀ di
u ∈Du,∀ d j

v ∈ Dv,(d
i
u, d j

v) ∈Cu,v⇒ f (di
u)

⋂
f (d j

v) =∅. (1)

Fig. 1 Architecture of a cloud storage infrastructure

Dedication: Cloud service provides support dedicated storage [3] where one tenant
will never share the underlying physical storage devices with any other tenants.
Given a user u’s storage placement f (Du), the set of disks used by u is Su =⋃n

i=1 f (di
u). For all the users in the user set U , dedication requirement by user u

can be satisfied if

∀v ∈U,v �= u,Su

⋂
Sv =∅. (2)

4 Separation Verification

Storage separation verification helps the cloud users to verify if the conflict-of-
interest files are placed separately by the CSP and cannot be accessed from the
same hard disk.

The basic idea is to measure the time when accessing the conflicting files at
the same time. If the two files are stored on the same hard drive, the reading time

Proof of Isolation for Cloud Storage 99

is longer than that when they are on different hard drives due to the contentions
of the I/O resources. However, several factors, such as sequential read or random
read, affect the file access time and may impact the accuracy of the separation
verification. We study such factors for both direct attached storage access and
remote cloud storage access, and then introduce effective countermeasures to
mitigate the influence of these factors.

4.1 Hard Disk I/O Contention

We take advantage of the contention of I/O resources to detect the file co-residency
and verify the storage separation. Three features of hard disk, namely disk head
contention, I/O request blocking, and disk cache miss, have obvious impacts on the
response time for accessing two co-resident files.

Disk Head Contention. Disk access speed is determined by both transfer rate and
access time. The transfer rate is the rate at which data flows between the drive and
the host, and it is a relative constant for a given hard disk in a computer. The access
time consists of two parts. The seek time measures the time for the disk arm to
move the disk heads to the cylinder containing the desired sector, and the rotational
latency is the time to rotate the platter and position the desired sector under the disk
head [36]. Therefore, when we simultaneously read two files stored on the same
hard disk, disk head has to move between at least two storage areas on the disk
platter. It causes a large amount of disk movements and results in longer access time.
However, if the two files are stored on different hard disks, no disk head contention
exists.

I/O Request Blocking. I/O scheduler maintains a request queue that lists all the I/O
requests from different processes and dispatches the shared I/O resource for each
request in an optimal order. From the earliest Elevator I/O scheduler to the recent
Complete Fair Scheduler (CFS) which is configured as the default I/O scheduler in
current Linux Kernel [10], they provide a better prevention against the starvation
and improve the overall I/O throughput. The I/O scheduler assigns incoming I/O
requests to specific queues based on the process originating the I/O requests and
then serves a configurable number of requests (by default, 4 in CFS) for each queue
before continuing onto the next. However, if two I/O requests on two different files
are issued to the same hard drive around the same time, when one process seizes the
disk I/O, the other has to wait. If the two files are stored on different disks, it has
less impact since I/O requests will be served by two devices at the same time.

Disk Cache Miss. Modern hard disk drives provide caching and prefetching
mechanism with their on-chip CPU and memory unit. When an operating system
issues a request to read a block from the hard drive, if the data of that block
is found in the disk cache memory, the read request can be served without any
disk mechanical movement. This makes hard disk drives have faster response time

100 Z. Wang et al.

overall, especially for sequential access time. To improve the overall throughput of
hard disk, a common strategy is not to start any prefetch if there are I/O requests
waiting to be served. Furthermore, another common strategy is to preempt or
terminate any ongoing prefetch as soon as a new I/O request arrives [30]. Therefore,
when we read two files on the same disk at the same time, the access time won’t
be significantly reduced by disk cache prefetch. In contrast, if two files are stored
on different disks, when we read the two files at the same time, disk cache prefetch
may help reduce the access time.

4.2 Verification of Direct Attached Storage

In the cloud, each VM has certain amount of attached storage for loading OS images
or serving as regular purpose storage. Accessing this form of cloud storage is similar
to accessing the local file system since the customers can decide the file systems and
can fully control the associated operating system. Since all the I/O requests should
go through the hypervisor or VM monitor, the I/O scheduling deployed by the
hypervisor may affect the disk access time. However, the functionality of hypervisor
I/O scheduling aims to guarantee that all the VM can fairly access I/O resources.
Therefore, it will not affect our verification process significantly. When we design a
verification scheme for direct attached storage, we must consider two major factors,
query mode and OS page cache, that affect the accuracy of the verification.

Query Mode. The query mode includes the query size, query pattern and query
range. We need to find the query modes that generate more disk head contentions
and thus enlarge the access time of co-resident files. Bowers et al. [11] identified
that the seek time dominates the reading time for smaller blocks, such as 256 KB.
Actual file access time, however, is highly dependent on the pattern of disk head
movement. For instance, only one seek is required to read sequential file blocks
on one hard disk. In contrast, random block accesses incur a highly varying seek
time. Therefore, random read helps to enlarge the access time of co-resident files.
Additionally, the size of the file determines the minimum range that the disk head
has to move around. When the disk head needs to move within a larger space on
the disk platter, it takes more seek time. Therefore, randomly fetching small blocks
from a large area on disk would cause the greatest disk contention.

OS Page Cache. Modern operation system borrows the available physical mem-
ory for the disk caching in order to reduce the low-speed disk accesses (e.g.,
kmem_cache facility in Linux kernel [10]). Read-ahead is another important feature
of memory cache management. The default read-ahead size in Linux is 32 pages
(4 KB per page), which can be scaled up and down by the read-ahead algorithm.
If the operating system detects that current disk accessing is sequentially reading,
the size of read-ahead will be increased automatically. When the operating system
detects that the current disk access is random, it will decrease the size of read-ahead.

Proof of Isolation for Cloud Storage 101

A simple way to remove the impact of OS memory cache is disabling the memory
cache in the operating system. This operation works well in local environment.
Sometimes, this operation is impossible to be executed, for example, in a cloud
provider controlled environment where storage server is invisible to the customers.
Alternatively, randomly reading proper size of blocks from the disk may minimize
such impact.

Therefore, we find that the optical query pattern will enlarge the disk contention,
and meanwhile minimize the impact of OS page cache. In section “Local Isolation
Checking”, we will identify the practical query pattern for storage verification.

4.3 Verification of Network Based Cloud Storage

In the cloud, large amount of storage are fabric network based, such as Amazon
S3 [3]. Besides the factors in local disk access, we need to consider more factors that
may introduce uncertainties when measuring the access time from a cloud storage.
In this case, the following factors should be considered.

Network Variability. When the cloud storage is network based, the network
variability should be mitigated for accurately measuring the file access time. Bowers
et al. [11] has done excellent work to evaluate the network delay. We can further
reduce the network latency and variability during the verification by using the
computing resources located in the same datacenter.

Multi-tenant Contention. Due to the unique feature of multi-tenant in the cloud,
I/O request contention from co-located tenants always exists; however, cloud
providers have done considerable work to minimize the service latency. Thus, such
contention is relatively small even when a large number of simultaneous disk I/O
access are requested from different storage devices. Another way to mitigate such
variability is to launch the verification at different time of a day.

Cloud Storage Layout. Different cloud storage providers may have various imple-
mentations of the storage layouts, which are important for selecting the appropriate
parameters for file co-residency verification. Three aspects of cloud storage layout
should be considered.

Disk Model Diversity. Most cloud storage infrastructures are established upon
the commodity hardware with less I/O throughput rather than high-end enterprise
facilities. The disk features such as seek time and cache algorithms vary from
different disk models. We assume that hard drives within one datacenter have similar
specification.

Data Partition. Cloud storage typically splits a big file into small chunks and each
chunk is entirely stored on one hard disk. There is little public information about the
exact chunk size adopted by each public cloud storage provider. Microsoft Azure
announced that the chunk and the replica unit is 100 MB in their Azure storage

102 Z. Wang et al.

architecture article [15]; Google File System [28] adopts 64 MB as its chunk size.
We believe that the chunk size is on the order of tens of megabytes in public cloud
storage.

Data Replication. In a cloud environment, all the data are stored with redundancy
for the purposes of both fault tolerance and load balance. Each query may be
answered by any replica that resides on the healthy and less busy storage device.
Amazon S3 introduces two data redundant storage options. The standard storage can
sustain the concurrent loss of data in two facilities, and the Reduced Redundancy
Storage (RRS) can only sustain the loss of data in a single facility [2]. The scheduler

Fig. 2 Local disk contention

of cloud storage provider determines a replica to serve certain query. Our scheme
verifies that the conflict-of-interest files are accessed from different storage devices
at any time even if some of their replicas are physically stored on the same storage
device.

4.4 Experiments

We conduct experiments on both direct attached cloud storage and network based
cloud storage and test our mechanism of separation storage verification.

Proof of Isolation for Cloud Storage 103

Local Isolation Checking

Localisolation checking aims to verify if two conflicts files are stored separately in
the attach based cloud storage. We set up a virtualization environment to simulate
the attach based cloud storage. The host machine has an Intel Core i5 CPU 3.10 GHz
and 4 GB RAM. Two Seagate ST3500418AS hard disks attached with the local
computer have the same capacity (500 GB), disk cache1 size (16 MB), average seek
time (less than 8.5 ms), latency (4.16 ms) and rotation speed (7,200 rpm). To reduce
the disk activities triggered by the operating system (OS), we turn off all possible
background processes in Ubuntu 12.04 (64-bit) operating system and keep the CPU
utilization lower than 1 % such that the disk contentions from other processes can
be minimized. Xen [7] virtualization platform is installed on the host machine. The
management domain Dom0 is located at the first hard disk sda. Each guest VM can
be launched on any hard disks-sda and sdb.

Disk Contention Benchmark. The isolation verification on single file is conducted
on a guest VM that is installed on sda. One logical volume on sdb is attached to the
guest VM. The activities of both Dom0 and guest VM OS have minimal impacts
on the disk access. We generate random files with sizes from 16 MB to 4 GB on
the disk.

Four factors will affect the block reading time from different parts of a single
file. They are the block size for each read, the reading pattern (sequential/random),
file size, and OS page cache (enable/disable). We test the impacts of all above
factors and determine the query mode for verifying the isolation of two conflict files.
Generally, the seek time dominates the reading time for small blocks. The blocks
with the size smaller than 64 KB tend to have the same reading time regardless the
disk manufacturers [11]. To have more accurate controls on the disk head movement
and create sufficient disk contention, we read small blocks with sizes from 64 KB
to 1 MB.

For the sequential reading, we select 50 sequential blocks from one 1 GB file that
is stored on one disk. For random reading, we randomly select 50 blocks from an
individual file with the sizes from 16 MB to 4 GB, respectively. Each test is repeated
200 times with different files in order to mitigate the file layout variability on the
hard disk. Between each test, we clean both OS page cache and disk cache. The
experimental results are shown in Fig. 2.

Figure 2 (1) shows that random reading creates more considerable disk con-
tention than sequential reading regardless of the status of OS page cache, especially
when the block size is relatively small. There are two reasons. First, disk head has
to move further for random read than the movements for sequential read. Second,
random read cannot take full advantage of the read-ahead mechanism provided by
the OS page cache. The results also show that enabled OS page cache dramatically
reduces the reading time for smaller blocks. When the block size is small, the

1In this paper, we call the memory on the disk drive as disk cache. The physical memory used as
disk buffer is referred as page cache.

104 Z. Wang et al.

sequential reading has significant advantage since the seek time dominates the
access time. When the block size increases to 1 MB, the data transfer time is
dominant in both random and sequential pattern. Therefore, reading random small
blocks enlarges disk contention.

Figure 2 (2) and (3) represent the random reading time of different block sizes
from different files with OS page cache enabled and disabled, respectively. When
OS page cache is enabled, the random reading time is affected by the file sizes.
When the file is small, the page cache greatly benefits the random reading. We
also observe that reading the same number of blocks from a larger file takes longer
since the disk head has to move across a larger range on the disk platter surface.
We compare the impact of OS page cache on different sizes of blocks as shown in
Fig. 2(4). When the block size is 256 KB, the status of OS page cache has minimal
affect on the average reading time. Therefore, we choose randomly reading 256 KB
as the query pattern for verifying the isolation of two files so that the impact of the
OS page cache is minimal; meanwhile the disk contention is considerable.

In-House Cloud Experiments. We exploit the above observations to check if two
conflicting files are stored on the same hard disk. The separation verification on
conflicting file pairs is conducted on different pairs of guest VMs. The virtualization
platform has done lots of work to fairly assign CPU time to each VM so that the
CPU contention between VMs is negligible. We create three pairs of guest VMs as
follows:

• Pair I. Each VM is attached by the disk volume from different disks.
• Pair II. Both VMs are attached by the disk volume from the same disk. The

distances of two volume on the disk is 10 GB.
• Pair III. Both VMs are attached by the disk volume from the same disk. The

distances of two volume on the disk is 20 GB.

As we show in the analysis in Sect. 4.3, the common practice of data partition
is less than 100 MB. We generate random files on each VM with sizes of 16, 32,
64, and 128 MB. We compare the average random reading time from different pairs
of VMs. We read 50 blocks (256 KB each) from each file with different sizes. The
results are shown in Fig. 3. For small files, such as 16 MB, the difference between
reading from one disk and two disks is small. The reason is that the small co-resident
files cannot cause enough disk movements to increase the reading time. However,
when the file size is no less than 32 MB, the time difference becomes larger than
40 %. When the disk space attached to a pair of VMs is larger, the access time is
slightly increased since the disk head has to move in a larger area on the disk platter.
However, such difference is small since the disk seek time is in the range of 2–10 ms.

Public Cloud Experiments. We launch a t1.micro EC2 instance in Amazon cloud
with a 160 GB hard disk. We compare the 256 KB block reading time. As shown
in Fig. 4, reading two files from one disk takes double longer than reading one file
from an individual disk. Therefore, our mechanism is practical in public clouds.

Proof of Isolation for Cloud Storage 105

Fig. 3 Eucalyptus experiment

Fig. 4 EC2 experiment

Remote Separation Checking

Remote separation checking aims to verify whether or not two conflicts files are
stored separately in the network based cloud storage. We conduct the experiments
on both in-house cloud and public cloud. We store the conflicting files on the
network based storage services, Walrus on Eucalyptus [25] and S3 on Amazon cloud
[3]. Both are widely used network based cloud storage nowadays. We discuss the
exploitation of our verification mechanism in public cloud.

In-House Cloud Experiments. We deploy the open source cloud platform Euca-
lyptus 3.1 and its object based storage service Walrus on our host machine to
evaluate the isolation verification of remote conflicting files. The interface of
Eucalyptus is completely compatible with Amazon cloud [3]. Two hard disks

106 Z. Wang et al.

serve the Walrus service. We upload different sizes of files on each hard disk.
We randomly read 256 KB blocks from file pairs stored either on the same disk or
separately. The experimental results are shown in Fig. 5. From Fig. 5(1), we observe
that reading from a single disk takes more than two times longer than reading from
two different disks. We randomly read 100 pairs of files on the same disk and another
100 pairs of file on different disk. Each pair of files have randomly different sizes.
The average reading time of each 256 KB files are shown in Fig. 5(2). With 0.02 s as
the threshold, we can successfully distinguish the isolated storage and co-resident
storage.

Public Cloud Experiments. We also evaluate our storage isolation checking
method in Amazon cloud, one of the most popular cloud platforms. Amazon S3

Fig. 5 Eucalyptus experiment

organizes the data by buckets and objects. Each bucket can contain unlimited num-
ber of objects. The object is like the file in common PC. In S3, all the buckets share
a unique name space. However, Amazon rarely discloses the implementation details
such as data partition and replication. We get the following clues majorly from the
officially published S3 best practice [20], S3 patent [1], and our observations.

• Network Variability: According to Amazon’s website [3], making GET requests
against Amazon S3 from within Amazon EC2 instances can minimize network
variability.

• Bucket Separation: Multiple buckets that start with different alphanumeric
characters will ensure a degree of partitioning from the start [20]. It implicates
that objects logically in the buckets with different initial letters must not reside
on the same disk.

• Object Layout: [20] also mentions that performing GETs in any sorted order can
increase the throughput. The smaller the objects, the more significant impact on
the overall throughput. For files with small size, sequential reading may benefit
from the disk cache and prefetch. We infer that a number of sequentially uploaded
small files should be stored on the same disk.

• Data Replication: For simplicity, we adopt RRS for all the experimental data.
With RRS, all the objects have two replicas in Amazon Cloud.

Proof of Isolation for Cloud Storage 107

Based on the limited Amazon S3 storage implementation details, we read the
pairs of files in three modes:

• Two Buckets with Different Initials: Reading two files from two buckets with the
same initial letter in the same region.

• Two Buckets with Same Initial: Reading two files from two buckets with different
initial letters in the same region.

• One Bucket: Reading two files from one bucket.

We launch two EC2 m1.medium instances with the same configuration in US
east region to execute the three reading modes. We create S3 buckets with different
initial letters located in the same region with the EC2 instances. For each bucket, we
upload 100 different 1 MB files with the RRS option. Most of these 100 small files
should be stored on the same storage device according to the analysis above. We
issue the GET requests from two EC2 instances at the same time. We evaluate the
correlation coefficient of reading time recorded by two VMs. The result is shown
in Fig. 6. We conduct the experiment at different time of a day and repeated during
2 weeks. We can observe that the reading time from the same bucket or from two
buckets with the same initial name has an order larger correlation coefficient than
reading from buckets with different initial letters. Therefore, our storage separation
verification method can be extended to distinguish accessing the same hard disk
from accessing different hard disks in real cloud environment.

Fig. 6 Co-residency checking in cloud

5 Dedication Verification

We propose TerraCheck [44] to help cloud users verify if their dedicated storage
devices have been misused to store other users’ data. TerraCheck detects the
malicious occupation of the dedicated device by monitoring the change of the

108 Z. Wang et al.

shadow data that are residual bits intentionally left on the disk and are invisible
by the file system. When the cloud providers share the dedicated disk with other
users, such misuses can be detected since the shadow data will be overwritten and
become irretrievable. We describe the theoretical framework of TerraCheck and
show experimentally that it works well in practice.

5.1 System Model

We assume the usage of the dedicated storage is well-planned by one user. For
example, the user allocates a determined amount of dedicated disk space to each

Fig. 7 Overview of TerraCheck

VM. This is a common practice [31] for resource management in the cloud. When
the user launches a small number of VMs, only part of the dedicated storage is
allocated. The rest of the dedicated storage should be protected from being exploited
by other users due to both security and performance reasons. We refer to this part of
the disk space as attested area. The disk space being used by the dedicated user
is called occupied area. Additionally, the attested area may scale up and down
based on the occupation of the dedicated disk. TerraCheck requires a small amount

Proof of Isolation for Cloud Storage 109

of trusted disk space for storing verification metadata on the occupied area. We
assume the occupied area is trusted, since an honest-but-greedy cloud provider is
trustworthy for managing user data.

Suppose a user C pays and possesses a dedicated disk with the capacity of s
in the cloud. The dedicated disk is divided into two areas as shown in Fig. 7. The
occupied area with the capacity of sa disk space has been allocated by C for storing
the data. The attested area with the capacity of su disk space remains unallocated
where su = s−sa. When C needs more disk space and increases the size of occupied
area, the size of attested area will shrink accordingly. The goal of TerraCheck is to
verify if the attested area has been misused by other users or the cloud provider.

TerraCheck consists of four major procedures, as shown in Fig. 7. First, it places
shadow chunks in the attested area of the target disk. The shadow chunks are
deleted files which cannot be accessed from the file system. Shadow chunks can be
recovered by disk forensics technique as long as they have not been overwritten.
Second, it generates metadata, such as the hash value of the shadow chunks,
for monitoring the alternation of shadow chunks. The metadata is stored on the
occupied area. Third, TerraCheck challenges the shadow chunks by using disk
forensic techniques to recover them. Lastly, it compares the forensics results with
the verification metadata. If any shadow chunk has been altered and cannot be
recovered, a violation of dedication requirement is detected.

Verification Requirements

A solution for verifying the dedicated storage should satisfy the following technical
requirements.

• Trustworthy. The verification mechanism should provide the users high con-
fidence in the result of the verification. When the cloud provider has to pay
higher storage overhead to defeat our verification mechanism, we can ensure our
checking capability from the economic consideration.

• Efficiency. The verification procedure should be fast, without obviously inter-
rupting the disk activities against the allocated part of the disk. Moreover, The
metadata used for verification should be small; otherwise, it is unacceptable to
use the same amount or more disk space to store the original shadow data on the
local disk.

• Scalability. When the dedicated user occupies or releases more disk space, for
example, for running more VMs or shutting down existing VMs, the disk area to
be attested varies. When the customer needs to scale the disk space up or down,
the affected shadow chunks should be as few as possible.

System Operations

TerraCheck consists of five basic operations. ChunkGen generates the shadow
chunks and places them on the attested area. MetaGen generates the verification
metadata and stores them on the occupied area. ChalGen generates the information

110 Z. Wang et al.

Table 1 Summary of operation parameters

Variable Meaning

C The cloud user who possesses the dedicated device and
executes dedication verification

n The number of shadow chunks placed on attested disk area
lk Length of each shadow chunk
th Header tag of each chunk
t f Footer tag of each chunk
K The set of shadow chunks
su Size of unallocated disk space
idki ID of shadow chunk i
F The set of files for generating shadow chunks
imgAA Disk image of attested area
metaDB File for storing verification metadata
bi Starting disk address of chunk i on attested area
ei Ending disk address of chunk i on attested area
idARx ID of attested region x
metaFILT ER File for storing Bloom filter

of challenged chunks. Retrieve executes the forensics of challenged chunks and
calculates their hash values. Veri f y operation compares the result of Retrieve with
the verification metadata recorded in MetaGen and performs dedication verification.
Table 1 summarizes all the variables used in the rest of this chapter.

• ChunkGen(n, lk, th, t f)→K = {k1,k2, . . . ,kn}: TerraCheck fills attested area with
a set of chunks K = {k1,k2, . . . ,kn} and n∗ lk = su. Each chunk ki has a header tag
th and a footer tag t f to represent the start and the end of a chunk, respectively.
The total length of the header and the footer lth + lt f is less than lk. This algorithm
takes the number of chunks, the length of each chunk, the header th, the footer t f

as inputs and generates n temporary files F = { f1, f2, . . . , fn} first. Each file fi in
F starts with th, ends with t f and the rest of it is filled by random bits. Each file
fi has the same length as lk. All the files in F are stored on attested area and then
deleted from the file system. The bits left on attested area associated with each
file fi are the set of chunks K = {k1,k2, . . . ,kn}. Each chunk contains three parts
– the header, the footer, and a random body.

• MetaGen(n, th, t f , imgAA, h)→{metaDB,⊥}: It takes the number of chunks, the
header, footer tag information, the disk image of attested area and a hash function
as inputs, returns the verification metadata or abortion. h : {0,1}∗ → {0,1}m

denotes a fixed hash function that outputs m bits hash value. The MetaGen algo-
rithm retrieves the chunks from imgAA by matching the th and t f and calculates the
hash value of each chunk. The results of verification metadata metaDB are stored
on occupied area. metaDB = {(idki ,bi,ei,h(ki))|i ∈ {1,2 . . .n},ki ∈ K} lists the
ID of a chunk and the boundary of each chunk on the disk, such as the start block
number bi and the end block number ei of chunk ki, and the hash value of each
chunk h(ki). Each chunk can be retrieved from the raw disk based on the start

Proof of Isolation for Cloud Storage 111

and end block number without the help of the file system. Let |metaDB| be the
number of items in metaDB. If |metaDB| �= n, it indicates that some chunks cannot
be recovered from the disk image of attested area or there is a mismatched header
(or footer) among the chunks. In this case, MetaGen fails and outputs abortion
symbol ⊥.

• ChalGen(metaDB, idki)→chal: This algorithm generates a challenge chal based
on metaDB and the ID of the queried chunk. chal = (idki ,bi,ei,h(ki)) ∈ metaDB

is the chunk to be examined.
• Retrieve(chal, h)→result: It takes the challenge and the hash function as inputs

and calculates the hash value after retrieving the chunk based on the information
specified in chal. It returns the hash value of the chunk in chal.

• Verify(result, chal)→{“success”, “failure”}: The Verify algorithm takes result
and chal as inputs and compares the hash value in result with that in chal. If the
two hash values match, it outputs “success” and otherwise outputs “failure”.

5.2 Basic Scheme

Our goal is to make sure that the attested area hasn’t been allocated to other users.
The basic TerraCheck scheme consists of four phases.

• Initial. In the initial phase, the attested area is filled with all zeros. This operation
prevents the existing content on the disk from affecting our placement results.

• Placement. We place the shadow chunks on the attested area by using the
ChunckGen and MetaGen algorithms. If MetaGen → ⊥, a failure occurs,
TerraCheck should be restarted from the initial phase. Otherwise, MetaGen
generates valid verification metadata metaDB.

• Verification. It is a procedure to patrol on the dedicated storage device and
collect the evidence for the undesired occupation by calling Challenge, Retrieve
and Veri f y algorithms until each shadow chunk placed in the attested area has
been checked. The Veri f ication phase would be stopped once Veri f y algorithm
returns a “failure” for any chunk. The dedication property is preserved if all the
chunks passed the examination.

• Update. It will be executed when the size of attested area is subject to changes.
It is difficult to predict the set of affected chunks since the allocation of disk
space depends on the disk scheduling. Therefore, both the shadow chunks and
their associated verification metadata become useless and subject to deletion. The
initial phase and placement phase should be restarted with the new attested area.

The basic TerraCheck scheme can successfully check the dedication requirement
with high accuracy. However, it has two major limitations:

• Computational Cost. The verification phase has to read through the whole
attested area and calculate the hash value for each shadow chunk.

112 Z. Wang et al.

• Update Operation. When the size of attested area has been changed, TerraCheck
should be restarted from the initial phase against the new attested area.

5.3 Advanced Scheme

To mitigate the limitations of the basic TerraCheck scheme, we propose a proba-
bilistic based TerraCheck scheme. To reduce the computational cost, we randomly
sample the chunks during the Verification procedure. Moreover, to provide a more
efficient update operation, we introduce multiple regions called attested region
within the attested area. The attested region is the smallest unit for C to scale up
the size of the occupied area. For example, C plans to attach a certain size of disk
space to a newly launched VM. When the size of the occupied area is shrunk due
to the termination of a VM, a new attested region will be created. Each attested
region contains multiple shadow chunks. The shadow chunk is the smallest unit for
challenge and verification. In addition, we use Bloom filter to reduce the storage for
saving the verification metadata.

Fig. 8 Probabilistic framework of advanced TerraCheck

Attested Region

We introduce attested region for conveniently scaling up and down the size of
attested area. The attested area is divided into multiple attested regions. The size
of attested region depends on how a user uses the dedicated disk. For example, if it
uses the disk as the attached secondary storage for running VMs, and each VM is
attached by a fixed amount of disk space, such amount is an optimal size for each
attested region. When an attested region should be deleted, the related verification
metadata are deleted and excluded from the TerraCheck procedure.

Proof of Isolation for Cloud Storage 113

Probabilistic Verification

Chunk sampling can greatly reduce the computational cost, while still achieving a
high detection probability. Suppose a user probes p chunks during the Challenge
phase and t chunks have been tampered and become unrecoverable. If the total
number of chunks is n, the probability that at least one of the probed chunks matches
at least one of the tampered chunks is ρ = 1− n−t

n · n−t−1
n−1 , . . . , · n−p+1−t

n−p+1 . Since
n−t−i

n−i ≥ n−t−i−1
n−i−1 , it follows that ρ ≥ 1− (n−t

n)p.
When t is a fraction of the chunks, the user can detect misbehaviors by asking for

a constant amount of chunks, independently on the total number of file blocks. As
shown in Fig. 8, if t = 1% of n, then TerraCheck asks for 459 chunks, 300 chunks
and 230 chunks in order to achieve the probability of at least 99, 95 and 90 %,
respectively. When the number of corrupted chunks goes up to 10 % of the total
chunks, the violation can be detected with 95 % probability, by only challenging
29 chunks. As the number of corrupted chunks increases, the number of chunks
required to be checked is decreased. The sampling is overwhelmingly better than
scanning all chunks in the basic TerraCheck scheme. Therefore, we can challenge
a fixed number of chunks to achieve certain accuracy. The size of each chunk will
determine the computation cost. When the size of each chunk is small, the overhead
for retrieving all challenged chunks from dedicated disk is low.

Advanced Operations

Our advanced TerraCheck scheme consists of the same phases as the basic
TerraCheck. We need to refine both the MetaGen and ChalGen algorithms in the
advanced scheme. Also, the update phase should be modified.

MetaGen(n, th, t f , imgAA, h)→{metaDB, ⊥}. The results of verification metadata
metaDB = {(idARx, idki ,bi,ei,h(ki))|i ∈ {1,2 . . .n},ki ∈ K}. It lists the ID of the
located attested region, the ID of a chunk and the boundary of each chunk on the
disk, such as the start block number bi and the end block number ei of chunk ki, and
the hash value of each chunk h(ki). Each chunk can be retrieved from the raw disk
based on the start and end block number and the ID of the attested region without
the help of the file system.

ChalGen (metaDB)
r→ chal. It randomly generates a challenge chal based on

metaDB. chal = (idARr , idkr ,br,er,h(kr)) ∈ metaDB is the chunk to be examined.

Update. Since the attested area is further divided into attested regions, when a user
needs to extend or shrink the disk space for occupied area, only limited number
of attested regions are deleted or added so that the TerraCheck against the rest of

114 Z. Wang et al.

chunks remains valid. When the occupied area scales up, the metadata related to
the erased attested region will be deleted. The rest of metadata is still available for
TerraCheck.

Reducing Metadata Storage

In the basic TerraCheck scheme, the size of metaDB for storing the verification
metadata is linear to the number of shadow chunks. The number of chunks could be
very large if the user wants to achieve a lower computational cost, as we discussed
in the probabilistic verification. Therefore, we use Bloom filter to reduce the amount
of storage for verification metadata in TerraCheck.

Bloom filter [9] is a space-efficient data structure for representing a set in order to
support membership queries. Bloom filter is suitable to the place where one might
like to keep or send a list for verification, but a complete list requires too much
space. We use Bloom filter to represent a set S = {x1,x2, . . . ,xn} of n elements as
an array of m counters, initially all set to 0. It uses k independent hash functions
h1,h2, . . . ,hk with range [1, m]. For mathematical convenience, we make the natural
assumption that these hash functions map each item in the universe to a random
number over the range {1, . . . ,m}. For each element x ∈ S, the bits hi(x) are set to 1
for 1 ≤ i ≤ k. A location can be set as 1 multiple times. To check if an item y is a
member of S, we check whether all hi(y) are 1. If not, then clearly y is not a member
of S. If all hi(y) are 1, we assume that y is in S.

Bloom filter may yield a false positive, where it suggests that an element x is in S
even though it is not. The probability of a false positive for an element not in the set,
or the false positive rate, can be estimated, given our assumption that hash functions
are perfectly random. After all the elements of S are hashed into the Bloom filter, the

probability that a specific bit is still 0 is PRzero = 1− 1
m

kn ≈ e−
kn
m . The probability of

a false positive is (1−PRzero)
k. A Bloom filter with an optimal value for the number

of hash functions can improve storage efficiency.
We modify our TerraCheck model for utilizing Bloom filter to reduce the storage

cost of the verification metadata.

• BF-MetaGen(th, t f , imgAA, h)→{metaFILT ER,⊥} The algorithm takes the header
and footer tag information, the disk image of attested area and a hash function as
inputs, returns the verification metadata or an abortion. metaFILT ER is a Bloom
filter which involves the hash value of each shadow chunk.

• BF-Verify(result, metaFILT ER)→{“success”, “failure”}: It takes result and
metaFILT ER as inputs and checks if the hash value in result is valid and associates
with any chunks. If the hash value can be found from metaFILT ER, the algorithm
outputs “success” and otherwise “failure”.

Proof of Isolation for Cloud Storage 115

5.4 Experiments

We implement and evaluate both basic TerraCheck scheme and advanced Ter-
raCheck scheme. All experiments are conducted on a Dell PowerEdge460 server
with Intel Core i5 CPU running at 3.10 GHz, and with 4,096 MB of RAM. The
system runs Ubuntu 12.04 (LST) that is configured with Xen Hypervisor. The
dedicated storage device is a WestDigital SATA 7,200 rpm hard disk with 1 TB
capacity and 64 MB cache. For evaluation purpose, we used SHA-1 as the hash
function h. The random values used for challenging the chunks in the advanced
TerraCheck are generated using the function proposed by Shoup [21]. All data
represent the mean of 20 trials.

We implement a large attested area in basic TerraCheck and implement an
attested region in advanced TerraCheck as a logical volume. The occupied area may
involve multiple logical volumes. LVM (Logical Volume Management) technology
is exploited to automate the update operation when the size of the occupied disk
space varies. We rely on the retrievability of the shadow chunks on each logical
volume to check the dedication property. We utilize Scalpel [29], an open source
file recovery utility with an emphasis on speed and memory efficiency, to retrieve
the shadow chunks based on their header tag and footer tag. To perform file recovery,
Scalpel makes two sequential passes over each disk image. The first pass reads
the entire disk image and searches for the headers, footers and a database of the
locations of these headers. The second pass retrieves the files from the disk image
based on the location information of the header and footer. Scalpel is file system-
independent and will carve files from FATx, NTFS, ext2 and ext3, or raw partitions.

We evaluate the computation overhead and storage cost during each phase of
TerraCheck.

Initial Phase. During the initial phase, the attested area is filled with all zeros. The
time for this phase is determined by, and linear to the size of attested area su. It
takes about 10 s for cleaning 1 GB of the attested area. Both basic TerraCheck and
advanced TerraCheck have the same performance at this phase.

Placement Phase. There are two steps for placing the chunks. The first step is
to generate and store the chunks to the attested area. The cost of this operation is
determined by the chunk size and the size of the attested area. On our testbed, it
takes 12 s to store 100 MB of shadow chunks. The second step is to generate the
metadata. It takes 8.198 s for Scalpel to scan 1 GB of the attested area in the first
pass and store the location information.

Verification Phase. The basic TerraCheck examines all the chunks based on the
verification metadata recorded in metaDB. Therefore, the time for generating the
challenge can be ignored. The advanced TerraCheck randomly challenges the
chunks. The generation of random number takes less than 0.1 ms. The challenged
chunks are retrieved from the attested area based on the start and end location
recorded as the verification metadata. Therefore, the performance is determined by
the disk access time. Table 2 shows the disk access time in our experiment.

116 Z. Wang et al.

Table 2 Time for retrieving chunks

Chunk size 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB

Retrieve time 13 ms 15 ms 20 ms 29 ms 48 ms 86 ms

After retrieving the challenged chunks, TerraCheck compares the hash value
of the retrieved chunk with the verification information. In basic TerraCheck ,
all the chunks residing on the attested area should be checked, which uses the
time for calculating the hash value of all the chunks. The advanced TerraCheck
scheme randomly challenges the chunks to achieve the detection of undesired disk
occupation. We simulate the behaviors that a proportion of attested area is altered.
For instance, if a random 1 % of an attested area with 10,000 chunks are altered, such
a situation could be detected with a 90 % probability by challenging 217 chunks on
average, which is close to the theoretical result.

Update Phase. For the basic TerraCheck scheme, the performance of the update
is same as the overhead of executing the initial and placement phases. The
performance of the advanced TerraCheck scheme depends on the change of the size
of the attested area. When the occupied area is extended, the advanced TerraCheck
scheme only needs to update the metaDB by deleting the items of affected chunks.
When the occupied area is shrunk, more attested regions should be created on the
attested area. The generation of each attested region takes about 400 ms regardless
the size of the attested region.

Reducing Metadata Storage. apgbmf [4] is originally used to manage Bloom
filter for restricting password generation in APG password generation software [37].
We use apgbmf version 2.2.3 as a standalone bloom filter management tool.

Fig. 9 Comparison of the storage cost with/without Bloom filter (%1 fault positive rate allowed)

Proof of Isolation for Cloud Storage 117

We consider each hash value of the shadow chunk as an item of password dictio-
nary in the context of apgbmf. We create a Bloom filter for such hash value dictio-
nary. During the verification phase of TerraCheck, if a recovered chunk is unaltered,
its hash value will pass the Bloom filter, i.e., the hash value is one of the hash values
which associates with an original shadow chunk with a high probability. When we
allow a 1 % fault positive rate, the storage cost with Bloom filter is reduced 5.5
times as shown in Fig. 9. When the number of chunks is more than 10 million, the
metadata only requires 36 MB as compared to 200 MB without using Bloom filter.

6 Related Work

Enforcement and verification are two research directions for securing and protecting
the data stored in the cloud. Virtualization technology [6, 14, 26, 33, 42, 51] and
cryptographic approaches [38,39,50] have been exploited to enforce the authorized
access to the data and secure the search and computation against the encrypted data
[18, 40]. However, enforcement based methods usually require a large amount of
operations and supports from data owners. To reduce such burden, more researches
on remote verification of security properties have been emerging to increase
visibility on the correct operations of cloud.

Reliability. Data redundancy is the key to preventing data loss and achieving fault
tolerance in cloud storages. Bowers et al. [11] proposed RAFT which allows users
verify that a file is stored with sufficient redundancy by measuring the response time
for accessing “well-collected” file blocks. Wang et al. [45] proposed a layout-free
scheme to verify the redundancy level deployed by the cloud provider within one
datacenter. Some other works [8, 16, 46] proposed mechanisms to verify that the
cloud storage provider replicates the data in multiple geo-locations by measuring
the network latency.

Integrity. Ateniese et al. [5] proposed PDP (Provable Data Possession) to verify the
integrity of the data stored in the cloud. PDP lowers the computational overhead by
sampling and applying HVT (Homomorphic Verifiable Tags) to the data. Some other
works improved PDP scheme by supporting the integrity verification of dynamic
data [24, 41] and multiple replication data [19], and by protecting the privacy [35]
of the verified data. PoR (Proof of Retrievability) [23] proves that the data stored
in the cloud is intact and retrievable. PoR enables verification of an entire data
collection without first retrieving it from the cloud. Later, Bowers et al. [12] and
Juels and Oprea [32] integrated PoR scheme into an auditing framework HAIL
(High-Availability and Integrity Layer) to detect and recovery from data corruption.

Confidentiality. To strongly protect against unauthorized access or disclosure of
the data stored in the cloud, some cloud providers promise to encrypt user data
at rest. In order to provide the transparency to tenants, Dijk et al. [22] proposed
Hourglass scheme to ensure the implementation of the encryption by the cloud
provider. Hourglass proves the correct handling of cloud-managed data encryption

118 Z. Wang et al.

by imposing a resource requirement (e.g., time, storage or computation) on the
process of translating files from the plain-text to the cipher-text.

Isolation. Recent researches [34,47,48] have indicated that side channels in shared
hardware may enable attackers to exfiltrate sensitive data (e.g., encryption keys [53])
across virtual machines (VMs). In view of such risks, cloud providers may promise
physically isolated resources to select tenants, but a challenge remains: tenants still
need to be able to verify physical isolation of their VMs, storage and network. Zhang
et al. [52] detects the co-resident VMs by monitoring the activities in the CPU cache.
Our work focuses on verifying the isolation of disk storage [43, 44].

7 Conclusion and Future Work

In this chapter, we present the requirements of storage isolation in the cloud from the
perspective of cloud users. Next, we introduce two Proof of Isolation (PoI) schemes
to allow cloud users technically verify the implementation of storage isolation
without any cooperation from cloud providers. PoI schemes provide cloud users
more observability of the cloud-managed isolation. In the future, we will extend our
isolation schemes to work on more diverse storage media, such as SSD (Solid State
Drive) and RAID, and study their performance.

Acknowledgements This material is based upon work supported by the National Science
Foundation under grant CT-20013A, by US Army Research Office under MURI grant W911NF-
09-1-0525 and DURIP grant W911NF-11-1-0340, and by the Office of Naval Research under grant
N0014-11-1-0471.

References

1. A. K. Fischman, A. H. Vermeulen: Keymap service architecture for a distributed storage system
(2010)

2. Amazon Simple Storage Service (S3): URL http://aws.amazon.com/s3/
3. Amazon Web Services: URL aws.amazon.com
4. apgbfm, http://linux.die.net/man/1/apgbfm: URL http://linux.die.net/man/1/apgbfm
5. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable

data possession at untrusted stores. In: Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pp. 598–609. ACM, New York, NY, USA (2007). DOI
10.1145/1315245.1315318. URL http://doi.acm.org/10.1145/1315245.1315318

6. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: Hypersentry: enabling
stealthy in-context measurement of hypervisor integrity. In: Proceedings of the 17th ACM
conference on Computer and communications security, CCS ’10, pp. 38–49. ACM, New York,
NY, USA (2010). DOI 10.1145/1866307.1866313. URL http://doi.acm.org/10.1145/1866307.
1866313

7. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: SOSP, pp. 164–177 (2003)

http://aws.amazon.com/s3/
aws.amazon.com
http://linux.die.net/man/1/apgbfm
http://linux.die.net/man/1/apgbfm
http://doi.acm.org/10.1145/1315245.1315318
http://doi.acm.org/10.1145/1866307.1866313
http://doi.acm.org/10.1145/1866307.1866313

Proof of Isolation for Cloud Storage 119

8. Benson, K., Dowsley, R., Shacham, H.: Do you know where your cloud files are? In: CCSW,
pp. 73–82 (2011)

9. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

10. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel - from I/O ports to process
management: covers version 2.6 (3. ed.). O’Reilly (2005)

11. Bowers, K.D., van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: How to tell if your cloud files are
vulnerable to drive crashes. In: ACM Conference on Computer and Communications Security,
pp. 501–514 (2011)

12. Bowers, K.D., Juels, A., Oprea, A.: Hail: a high-availability and integrity layer for cloud
storage. In: Proceedings of the 16th ACM conference on Computer and communications
security, CCS ’09, pp. 187–198. ACM, New York, NY, USA (2009). DOI 10.1145/1653662.
1653686. URL http://doi.acm.org/10.1145/1653662.1653686

13. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium on Security
and Privacy, pp. 206–214 (1989)

14. Butt, S., Lagar-Cavilla, H.A., Srivastava, A., Ganapathy, V.: Self-service cloud computing. In:
ACM Conference on Computer and Communications Security, pp. 253–264 (2012)

15. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav,
S., Wu, J., Simitci, H., Haridas, J., Uddaraju, C., Khatri, H., Edwards, A., Bedekar, V.,
Mainali, S., Abbasi, R., Agarwal, A., ul Haq, M.F., ul Haq, M.I., Bhardwaj, D., Dayanand, S.,
Adusumilli, A., McNett, M., Sankaran, S., Manivannan, K., Rigas, L.: Windows azure storage:
a highly available cloud storage service with strong consistency. In: SOSP, pp. 143–157 (2011)

16. Chen, B., Curtmola, R.: Towards self-repairing replication-based storage systems using
untrusted clouds. In: Proceedings of the third ACM conference on Data and application
security and privacy, CODASPY ’13, pp. 377–388. ACM, New York, NY, USA (2013). DOI
10.1145/2435349.2435402. URL http://doi.acm.org/10.1145/2435349.2435402

17. Cloud Security Alliance: The notorious nine: Cloud computing top threats in 2013 (2013)
18. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:

improved definitions and efficient constructions. In: Proceedings of the 13th ACM conference
on Computer and communications security, CCS ’06, pp. 79–88. ACM, New York, NY, USA
(2006). DOI 10.1145/1180405.1180417. URL http://doi.acm.org/10.1145/1180405.1180417

19. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: Mr-pdp: Multiple-replica provable data
possession. In: Proceedings of the 2008 The 28th International Conference on Distributed
Computing Systems, ICDCS ’08, pp. 411–420. IEEE Computer Society, Washington, DC,
USA (2008). DOI 10.1109/ICDCS.2008.68. URL http://dx.doi.org/10.1109/ICDCS.2008.68

20. Dan@AWS: Best Practices for Using Amazon S3 (2009). URL http://aws.amazon.com/
articles/1904

21. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the standard model. In:
EUROCRYPT, pp. 289–307 (2006)

22. Dijk, M.V., Juels, A., Oprea, A., Rivest, R.L., Stefanov, E., Triandopoulos, N.: Hourglass
schemes: How to prove that cloud files are encrypted. In: ACM Conference on Computer and
Communications Security (2012)

23. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplification. In:
Theory of Cryptography Conference, pp. 109–127 (2009)

24. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In:
Proceedings of the 16th ACM conference on Computer and communications security, CCS
’09, pp. 213–222. ACM, New York, NY, USA (2009). DOI 10.1145/1653662.1653688. URL
http://doi.acm.org/10.1145/1653662.1653688

25. Eucalyptus, http://www.eucalyptus.com: URL www.eucalyptus.com
26. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual machine-based

platform for trusted computing. SIGOPS Oper. Syst. Rev. 37(5), 193–206 (2003). DOI 10.
1145/1165389.945464. URL http://doi.acm.org/10.1145/1165389.945464

27. Gartiner, Inc.: Forecast overview: Public cloud services, worldwide, 2011–2016, 4q12 update
(2013)

http://doi.acm.org/10.1145/1653662.1653686
http://doi.acm.org/10.1145/2435349.2435402
http://doi.acm.org/10.1145/1180405.1180417
http://dx.doi.org/10.1109/ICDCS.2008.68
http://aws.amazon.com/articles/1904
http://aws.amazon.com/articles/1904
http://doi.acm.org/10.1145/1653662.1653688
http://www.eucalyptus.com
www.eucalyptus.com
http://doi.acm.org/10.1145/1165389.945464

120 Z. Wang et al.

28. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP, pp. 29–43 (2003)
29. III, G.G.R., Roussev, V.: Scalpel: A frugal, high performance file carver. In: DFRWS (2005)
30. Jacob, B., Ng, S., Wang, D.: Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann

Publishers Inc. (2007)
31. Jhawar, R., Piuri, V.: Fault tolerance management in iaas clouds. In: Proc. of the 1st IEEE-

AESS Conference in Europe about Space and Satellite Telecommunications (ESTEL 2012),
ESTEL 2012. Rome, Italy (2012)

32. Juels, A., Oprea, A.: New approaches to security and availability for cloud data. Commun.
ACM 56(2), 64–73 (2013). DOI 10.1145/2408776.2408793. URL http://doi.acm.org/10.1145/
2408776.2408793

33. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without
the virtualization. In: Proceedings of the 37th annual international symposium on Computer
architecture, ISCA ’10, pp. 350–361. ACM, New York, NY, USA (2010). DOI 10.1145/
1815961.1816010. URL http://doi.acm.org/10.1145/1815961.1816010

34. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In: ACM Conference on Computer and
Communications Security, pp. 199–212 (2009)

35. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction of digital
contents. IACR Cryptology ePrint Archive 2008, 186 (2008)

36. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating system concepts (7. ed.). Wiley (2005)
37. Spafford, E.: Opus: Preventing weak password choices
38. di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Over-encryption:

management of access control evolution on outsourced data. In: Proceedings of the 33rd
international conference on Very large data bases, VLDB ’07, pp. 123–134. VLDB Endowment
(2007). URL http://dl.acm.org/citation.cfm?id=1325851.1325869

39. di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Support for write
privileges on outsourced data. In: SEC, pp. 199–210 (2012)

40. Wang, C., Ren, K., Wang, J., Urs, K.M.R.: Harnessing the cloud for securely solving large-
scale systems of linear equations. In: ICDCS, pp. 549–558 (2011)

41. Wang, Q., Ren, K., Yu, S., Lou, W.: Dependable and secure sensor data storage with dynamic
integrity assurance. TOSN 8(1), 9 (2011)

42. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hypervisor control-
flow integrity. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pp. 380–395. IEEE Computer Society, Washington, DC, USA (2010). DOI 10.1109/SP.2010.
30. URL http://dx.doi.org/10.1109/SP.2010.30

43. Wang, Z., Sun, K., Jajodia, S., Jing, J.: Disk storage isolation and verification in cloud. In:
Globecom 2012. Anaheim, CA, USA (2012)

44. Wang, Z., Sun, K., Jajodia, S., Jing, J.: Terracheck: Verification of dedicated cloud storage.
In: 27th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and
Privacy (DBSec ’13). Newark, NJ, USA (2013)

45. Wang, Z., Sun, K., Jajodia, S., Jing, J.: Verification of data redundancy in cloud storage. In:
Proceedings of the 2013 International Workshop on Security in Cloud Computing (To Appear)

46. Watson, G.J., Safavi-Naini, R., Alimomeni, M., Locasto, M.E., Narayan, S.: Lost: location
based storage. In: Proceedings of the 2012 ACM Workshop on Cloud computing security
workshop, CCSW ’12, pp. 59–70. ACM, New York, NY, USA (2012). DOI 10.1145/2381913.
2381926. URL http://doi.acm.org/10.1145/2381913.2381926

47. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: High-speed covert channel attacks in
the cloud. In: the 21st USENIX Security Symposium (Security’12) (2012)

48. Xiao, J., Xu, Z., Huang, H., Wang, H.: A covert channel construction in a virtualized envi-
ronment. In: ACM Conference on Computer and Communications Security, pp. 1040–1042
(2012)

49. Xu, Y., Bailey, M., Jahanian, F., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D.: An exploration
of l2 cache covert channels in virtualized environments. In: CCSW, pp. 29–40 (2011)

http://doi.acm.org/10.1145/2408776.2408793
http://doi.acm.org/10.1145/2408776.2408793
http://doi.acm.org/10.1145/1815961.1816010
http://dl.acm.org/citation.cfm?id=1325851.1325869
http://dx.doi.org/10.1109/SP.2010.30
http://doi.acm.org/10.1145/2381913.2381926

Proof of Isolation for Cloud Storage 121

50. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: INFOCOM, pp. 534–542 (2010)

51. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of virtual machines
in multi-tenant cloud with nested virtualization. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pp. 203–216. ACM, New York,
NY, USA (2011). DOI 10.1145/2043556.2043576. URL http://doi.acm.org/10.1145/2043556.
2043576

52. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection in the cloud
via side-channel analysis. In: IEEE Symposium on Security and Privacy, pp. 313–328 (2011)

53. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and their use
to extract private keys. In: Proceedings of the 2012 ACM conference on Computer and
communications security, CCS ’12, pp. 305–316. ACM, New York, NY, USA (2012). DOI
10.1145/2382196.2382230. URL http://doi.acm.org/10.1145/2382196.2382230

http://doi.acm.org/10.1145/2043556.2043576
http://doi.acm.org/10.1145/2043556.2043576
http://doi.acm.org/10.1145/2382196.2382230

Selective and Fine-Grained Access to Data
in the Cloud

Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Abstract This chapter surveys some of the research results related to the protection
and efficient access to data stored and managed by external cloud servers. We
first provide an overview of the security and privacy problems and challenges that
need to be considered, and then illustrate emerging approaches for protecting data
externally stored, and for enforcing fine-grained (queries) and selective (access
control) accesses on them. Finally, we show how the combined application of
the solutions discussed may introduce privacy problems that should be carefully
considered.

1 Introduction

Emerging paradigms like data outsourcing and cloud computing have attracted the
attention of the research and industrial communities thanks to their advantages in
terms of reduced costs for IT resources, increased storage, flexibility in resource
management, and higher scalability. These advantages however do not come for
free. In fact, these emerging paradigms also introduce a number of privacy and
security risks that may represent a serious obstacle for their wide development and
for their acceptance by users and companies. Security and privacy may relate to
different aspects, including resources, data and network isolation, attacks to the
cloud servers, compliance with laws and regulations, reliability of applications and
services, protection of the confidentiality and integrity of data, and data availability
(e.g., [11,19,38,39,44]). In this chapter, we will provide an overview of the problems
and solutions related to the proper protection of the confidentiality of the data
and to the efficient access to them. These problems become quite complex in a

S. De Capitani di Vimercati • S. Foresti • P. Samarati (�)
Università degli Studi di Milano – Dipartimento di Informatica
Via Bramante 65, 26013 Crema, Italy
e-mail: pierangela.samarati@unimi.it

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__6,
© Springer Science+Business Media New York 2014

123

mailto:pierangela.samarati@unimi.it

124 S. De Capitani di Vimercati et al.

cloud scenario since users release and store their data on external servers that are
outside their control. Also, the advances in the Information and Communication
Technologies (ICTs), including the possibility of combining and analyzing more
information from several data sources, intensify the data protection problem.

The protection of potentially sensitive data stored and managed by external cloud
servers poses interesting challenges. In fact, cloud servers can be characterized
by different levels of trust, ranging from honest-but-curious servers, meaning that
they are trusted for the management of the data but cannot know (access) the data
they store, to servers that may intentionally behave improperly in the storing and
processing of the data. Data are therefore encrypted by the data owner before their
storage in the cloud. Since cloud servers cannot decrypt data, there is the problem
of defining techniques (e.g., indexes) for enforcing fine-grained retrieval of the data
without compromising their privacy. However, techniques that support effective and
efficient accesses to the outsourced data are not enough. In fact, if the server (or a
generic observer) monitors the accesses by users, it may be able to draw inferences
on which data have been accessed. Also, the presence of multiple users who rely on
external storage for making their data available to others, introduces the problem of
enforcing selective (read and write) access to the outsourced data.

In this chapter, after a brief overview of the different security and privacy
problems that can arise in a cloud computing scenario, we survey and discuss
research results related to the protection of the privacy of outsourced data, and on
the fine-grained and selective retrieval of data. We also show that the combination of
techniques addressing a specific problem can cause privacy breaches. The remainder
of the chapter is organized as follows. Section 2 provides an overview of the
main security and privacy risks in a cloud scenario. Section 3 illustrates some
approaches and open issues related to the protection of data confidentiality, indexing
for query support, and selective access. Section 4 describes how the combination of
indexes for query support and fragments for data confidentiality can cause leakage
of confidential information. Section 5 describes how the combination of indexes
and selective encryption may allow unauthorized users to infer (or reduce their
uncertainty on) information that they are not authorized to access. Finally, Sect. 6
provides our conclusions.

2 Security and Privacy in the Cloud

The security and privacy problems that arise when data are stored at external
servers have been the subject of many studies (e.g., [22, 31, 37]). Depending on
the considered aspect, the security and privacy problems can be related to: (i) the
privacy of users; (ii) the privacy and integrity of data storage; (iii) the privacy and
integrity of queries; and (iv) the secure and private data computations involving
multiple providers. Figure 1 illustrates the reference cloud scenario where users
interact with external cloud servers for accessing data and services, and different

Selective and Fine-Grained Access to Data in the Cloud 125

Fig. 1 Reference cloud scenario

cloud servers collaborate for offering a service or responding to a query. In the
remainder of this section, we provide a description of each of the four categories of
security and privacy problems mentioned above.

Privacy of users. Cloud services allow users to access applications and data on
demand every-time they need. To successfully complete the required access, users
may be asked to provide some information while however wishing to protect their
identities for privacy reasons. For instance, a user can be interested in querying a
cloud server for collecting information about a given illness without revealing her
identity to avoid possible correlations between the illness and herself or a person
close to her. The techniques developed for supporting anonymous communication
between parties and attribute-based access control can be helpful in protecting the
privacy of the users. In fact, anonymous communication techniques allow users to
communicate on the Internet without revealing their identities [9], meaning that an
observer cannot trace who is communicating with whom, or who is interacting with
which server or searching for which data. Attribute-based access control solutions
allow users to access resources or data without reveling their identities [13]. The
idea is that, instead of declaring their identities, users prove that they satisfy the
conditions needed for the access. To this purpose, a user can disclose a credential (a
set thereof) certifying the information necessary for the access. The server verifies
whether the credential is valid and whether the information it certifies satisfies the
policy regulating access to the resource. The research community has also devoted
considerable attention to the use of anonymous credentials [16] for access control
(e.g., [4]). An anonymous credential allows a user to make statements about attribute
values, maintaining the values private. For instance, anonymous credentials permit
to selectively release a subset of the properties in a credential or to prove that
they satisfy some conditions, without revealing any information about their values.
Anonymous credentials can be at the basis of a new generation of access control
policy languages that can be particularly suited to open and dynamic scenarios like
the cloud.

126 S. De Capitani di Vimercati et al.

Recently, some proposals have started to address the problem of regulating the
release of users’ personal information according to privacy preferences expressed
by the users themselves. These proposals have introduced models relying on user
preferences that permit to associate a higher or lower sensitivity with the combined
release of a set of properties/credentials (e.g., [5–7,40,53]). For instance, a user may
consider the joint release of her name and credit card number more sensitive than
the release of each information singularly taken. Although these solutions represent
a first step towards the definition of a comprehensive approach for the protection of
users’ privacy, there are still several open issues: the development of user-friendly
approaches for expressing privacy preferences; the ability of defining privacy
preferences that depend on the context; and the integration of these approaches with
server-side solutions supporting fine-grained policy disclosure, which permit the
server to obfuscate the portions of its policies considered sensitive, while providing
the user with enough information for releasing the information necessary to possibly
gain access (e.g., [8]).

Privacy and integrity of data storage. When data are outsourced to an external
server that is outside the control of the data owner, the protection of the confi-
dentiality and of the integrity of the data, as well as the efficient access to them
become clearly of paramount importance. In this context, the research community
has been very active and produced advancements in several areas: solutions for
protecting data confidentiality (e.g., encryption and fragmentation [1, 21, 37]);
indexes for supporting queries (e.g., [17, 37]), solutions for supporting selective
access to outsourced data (e.g., [24]), solutions for ensuring data integrity (e.g.,
signatures [14, 35, 43]). These approaches typically consider a scenario where a
data owner outsources her data to an external server that can be trusted to properly
manage the data, making them available to requesting users, but it is not trusted to
read the content of the data it stores (i.e., honest-but-curious server). The outsourced
data can be of any type, including files and relational tables. In the remainder
of this chapter, for simplicity and without loss of generality, we will assume that
the outsourced data are organized in a single relation r, stored in a (distributed)
relational database. Relation r is defined over relational schema R(a1, . . . ,an), with
attribute ai defined over domain Di, i = 1, . . . ,n. The presentation of solutions and
issues related to the protection of the privacy of outsourced data will be the subject
of the following sections.

Privacy and integrity of queries. Accessing information from external cloud
servers and performing queries over outsourced data introduce several privacy
and integrity issues. Existing data management architectures typically assume that
the data obtained from distributed parties have not been tampered with, and are
available only to authorized parties. Such assumptions do not apply anymore in
cloud scenarios, where multi-tenant infrastructures orchestrate different services.
Assurances on the fact that the privacy of the queries is preserved and that
computations on data are processed in the expected way (integrity and verifiability)
are becoming more and more important. In fact, there is an increasing need for novel

Selective and Fine-Grained Access to Data in the Cloud 127

techniques that support not only data privacy, but also the privacy of the accesses
that users make on such data. This problem has been traditionally addressed by
Private Information Retrieval (PIR) proposals (e.g., [18]), which provide protocols
for querying a database that prevent the external server from inferring which data
are being accessed. PIR solutions however have high computational complexity,
and alternative approaches have been proposed. These novel approaches rely on
the Oblivious RAM structure (e.g., [33, 47, 48]) or on the definition of specific tree-
based data structures combined with a dynamic allocation of the data (e.g., [29,30]).
The goal is to support the access to a collection of encrypted data while preserving
access and pattern confidentiality, meaning that an observer can infer neither what
data are accessed nor whether two accesses aim to the same data. Besides protecting
access and pattern confidentiality, it is also necessary to design mechanisms for
protecting the integrity and authenticity of the computations, that is, to guarantee
the correctness, completeness, and freshness of query results. Most of the techniques
that can be adopted for verifying the integrity of query results operate on a single
relation and are based on the idea of complementing the data with additional data
structures (e.g., Merkle trees) or of introducing in the data collection fake tuples that
can be efficiently checked to detect incorrect or incomplete results (e.g., [41,46,50–
52]). Interesting aspects that need further analysis are related to the design of
efficient techniques able to verify the completeness and correctness of the results
of complex queries (e.g., join operations among multiple relations, possibly stored
and managed by different cloud servers with different levels of trust).

Secure and private data computations. More and more emerging scenarios
require different cloud servers to cooperate to the aim of sharing information and/or
performing distributed computations. This sharing process can be clearly selective,
meaning that different servers may have different access privileges. Recently, a
significant amount of research has addressed the problem of processing distributed
queries under protection requirements (e.g., [2, 15, 26]). Some proposals are based
on the concept of access pattern, a profile associated with each relation/view [15].
For each attribute of the relation/view, the access pattern includes a value that may
be either i for input or o for output. When accessing a relation, the values for all
i attributes must be supplied to obtain the corresponding values of o attributes.
Sovereign joins [2] are an alternative solution for securely processing joins. This
solution is based on a secure coprocessor, which is involved in query execution, and
exploits cryptography. Other approaches propose an authorization model to regulate
the view that each server can have on the data, ensuring that query computation
exposes to each server only the data that the server can view [26]. The idea is that
a relation (base or resulting from the evaluation of a query) can be released to a
server whenever the information it carries (either directly or indirectly when the
relation has been obtained as the result of a query) is visible from the receiving
party. The proposed authorization model operates at the schema level and supports
the definition of generic view patterns, thus nicely meeting both expressiveness and
simplicity requirements.

128 S. De Capitani di Vimercati et al.

Fig. 2 Summary of security and privacy issues and corresponding solutions

Figure 2 summarizes the main categories of security and privacy issues discussed
above (gray boxes) along with some of the corresponding solutions (white boxes).
Note that this classification does not aim to be complete but only to provide a quick
overview of the solutions mentioned.

3 Privacy of Data Storage

The problem of protecting outsourced data while enjoying effective and efficient
data management and retrieval operations has attracted the attention of many
researches, and several investigations have been carried out. The problem is quite
complex and involves several aspects, including basic techniques for protecting
data at rest (Sect. 3.1), techniques for efficiently accessing encrypted data without
compromising their confidentiality (Sect. 3.2), and data-centric techniques for
supporting selective access to the outsourced data without relying on the data owner
and/or on the honest-but-curious server storing the data (Sect. 3.3). We now describe
more in details these aspects.

3.1 Encryption and Fragmentation

The problem of protecting the confidentiality of outsourced data has been one of
the first issues investigated in the data outsourcing and cloud scenarios. In fact, the
risk that unauthorized parties (or even the external server itself) can access sensitive

Selective and Fine-Grained Access to Data in the Cloud 129

PATIENTS
SSN Name YoB Job Disease

t1 123456789 Alice 1980 Clerk Asthma
t2 234567891 Bob 1980 Doctor Asthma
t3 345678912 Carol 1970 Nurse Asthma
t4 456789123 David 1970 Lawyer Bronchitis
t5 567891234 Eva 1970 Doctor Bronchitis
t6 678912345 Frank 1960 Doctor Gastritis
t7 789123456 Gary 1960 Teacher Gastritis
t8 891234567 Hilary 1960 Nurse Diabetes

c0 = {SSN}
c1 = {Name, Disease}
c2 = {Name, Job}
c3 = {Job, Disease}

a b

Fig. 3 An example of plaintext relation (a) and of a set of confidentiality constraints over it (b)

information is one of the main factors for which users (and not only) are often
reluctant to adopt the cloud for storing their data. The solutions proposed to protect
data confidentiality are based on encryption and fragmentation, which can be used
either singularly or in combination.

Encryption consists in wrapping a protective layer of encryption around data
before storing them at an external server (e.g., [17,34,37,44]). Since the encryption
key is known only to the data owner and to authorized users, this technique
protects the data against both external (malicious) parties, and the server itself.
While effective, this approach is based on the conservative assumption that all the
outsourced data are equally sensitive and must therefore be protected. However,
as first observed in [1, 20, 21], often data are not sensitive per se but what is
sensitive is their association with other data. As an example, the list of the names
of hospitalized patients and the list of diseases cured in a hospital are not sensitive.
On the contrary, the association of patients’ names with the illness they suffer from
is highly sensitive and should therefore be kept confidential. Data confidentiality
can then be achieved by properly protecting sensitive associations. Given a relation
r over relation schema R(a1, . . . ,an), both sensitive attribute values and sensitive
associations among them can be modeled through confidentiality constraints [1]. A
confidentiality constraint c over R is a subset of the attributes in R (i.e., c⊆R),
modeling a sensitive association on the values of the attributes in c. Constraint
c states that, for each tuple t in r: (i) value t[a] is considered sensitive per se,
if c is a singleton constraint (i.e., c = {a}); (ii) the joint visibility of the values
of the attributes in c is considered sensitive, if c is an association constraint (i.e.,
c ={ai, . . . ,a j}). For instance, Fig. 3b illustrates a set of confidentiality constraints
over relation PATIENTS in Fig. 3a. Singleton constraint c0 states that the list of
Social Security Numbers is considered sensitive per se. The remaining association
constraints state that the association of: patients’ name with the disease they suffer
from (c1), patients’ names with their job (c2), and patients’ job with their disease
(c3) are considered sensitive, respectively.

Given a relation r and a set C of confidentiality constraints over it, the goal is
to combine fragmentation and encryption techniques to guarantee that sensitive
values and sensitive associations are properly obfuscated. Intuitively, singleton

130 S. De Capitani di Vimercati et al.

constraints are enforced by encrypting the attribute values before outsourcing or by
not outsourcing the attribute values at all. Association constraints are enforced by
partitioning the attributes in R in different subsets (fragments), or by not releasing
(in clear form) at least one of the attributes in the constraint. A fragmentation
correctly enforces the confidentiality constraints if no fragment stored at the external
server represents all the attributes in a constraint in clear form, and fragments cannot
be joined by unauthorized users.

The approaches that rely on fragmentation and encryption for enforcing confi-
dentiality constraints differ in how they guarantee that fragments cannot be joined,
and in how they protect attribute values considered sensitive per se. Based on these
differences, existing techniques can be classified as follows.

• Non-communicating pair of servers [1]. The data owner partitions relation R in
two fragments, F1 and F2, stored at two non-communicating servers. Those
attributes that cannot be stored at any of the two servers without violating
confidentiality constraints are encoded and the result is stored at the two servers
(e.g., the attribute values are encrypted via one-time-pad, and the result of
encryption is stored at one server, while the key is stored at the other one).
Only users who can access both the versions of an encoded attribute can
reconstruct its plaintext values. Figure 4 illustrates an example of fragmentation
for relation PATIENTS in Fig. 3a that satisfies the confidentiality constraints in
Fig. 3b. It is composed of fragments F1 = {tid, Name, YoB, SSNk, Diseasek}
and F2 = {tid, Job, SSNk, Diseasek}. Attribute tid is a tuple identifier
introduced in the two fragments to permit authorized users to correctly join F1

and F2 to reconstruct the original content of relation PATIENTS. Attributes SSNk

and Diseasek represent the encoded version of attributes SSN and Disease,
respectively.

• Multiple fragments [21]. The data owner partitions relation R in an arbitrary
set of fragments, {F1, . . . ,Fm}, possibly stored at the same server. Fragments
are disjoint, meaning that no attribute is represented in clear form in more than
one fragment. All the attributes in R that are not represented in clear form in
a fragment are however represented in encrypted form in the fragment (i.e.,
each fragment is complete). Figure 4 illustrates an example of fragmentation
for relation PATIENTS in Fig. 3a that satisfies the confidentiality constraints in
Fig. 3b. It is composed of three fragments: F1 = {salt, enc, Name, YoB},
F2 = {salt, enc, Job}, and F3 = {salt, enc, Disease}. Attribute
salt is a randomly chosen value, different for each tuple in each fragment.
Attribute enc is the result of the encryption of the attributes in the original
relation that are not represented in clear form in the fragment, concatenated with
salt. For readability, in all our examples tuples in fragments are in the same
order as in the original relation, even if the order in which tuples are stored in
fragments is independent from the order in which they appear in the original
relation. Note that the possibility of using an arbitrary number of fragments has
the advantage that all attributes that are not involved in singleton constraints can
be represented in clear form in a fragment (in the worst case, we can have a
fragment for each attribute), as it is visible from the example above.

Selective and Fine-Grained Access to Data in the Cloud 131

F1

tid Name YoB SSNk Diseasek

1 Alice 1980 jdkis hyaf4k
2 Bob 1980 u9hs9 j97;qx
3 Carol 1970 j9und 9jp‘md
4 David 1970 p0vp8 p;nd92
5 Eva 1970 8nn[0-mw-n
6 Frank 1960 j9jMK wqp9[i
7 Gary 1960 87l’D L0MB2G
8 Hilary 1960 8pm}n @h8hwu

F2

tid Job SSNk Diseasek

1 Clerk uwq8hd jsd7ql
2 Doctor j-0.dl; 0],nid
3 Nurse 8ojqdkf j-0/?n
4 Lawyer j0i12nd 5lkdpq
5 Doctor mj[9;’s j0982e
6 Doctor aQ14l[jnd%d
7 Teacher 8qsdQW OP[’
8 NURSE 0890UD UP0D@

Non-communicating pair of servers (two can keep a secret) [1]

F1
salt enc Name YoB

s11 Bd6!l3 Alice 1980
s12 Oij3X. Bob 1980
s13 9kEf6? Carol 1970
s14 ker5/2 David 1970
s15 C:mE91 Eva 1970
s16 4lDwqz Frank 1960
s17 me3,op Gary 1960
s18 zWf4g> Hilary 1960

F2
salt enc Job

s21 8de6TO Clerk
s22 X’mlE3 Doctor
s23 wq.vy0 Nurse
s24 nh=I3a Lawyer
s25 hh%kj) Doctor
s26 ;vf5eS Doctor
s27 e4+YUp Teacher
s28 pgt6eC Nurse

F3
salt enc Disease

s31 ew3)V! Asthma
s32 LkEd69 Asthma
s33 w8vd66 Asthma
s34 1”qPdd Bronchitis
s35 (mn2eW Bronchitis
s36 wD}x1X Gastritis
s37 0opEl Gastritis
s38 Sw@Fez Diabetes

Multiple fragments [21]

Departing from encryption (keep a few) [20]

Fo

tid SSN Job Disease

1 123456789 Clerk Asthma
2 234567891 Doctor Asthma
3 345678912 Nurse Asthma
4 456789123 Lawyer Bronchitis
5 567891234 Doctor Bronchitis
6 678912345 Doctor Gastritis
7 789123456 Teacher Gastritis
8 891234567 Nurse Diabetes

Fs

tid Name YoB

1 Alice 1980
2 Bob 1980
3 Carol 1970
4 David 1970
5 Eva 1970
6 Frank 1960
7 Gary 1960
8 Hilary 1960

Fig. 4 An example of fragmentation of relation PATIENTS in Fig. 3a according to the non-
communication pair of servers, multiple fragments, and departing from encryption scenarios

• Departing from encryption [20]. The data owner partitions relation R in two
fragments, Fo and Fs, and locally stores one of them (Fo), while the other is
outsourced to an external server (Fs). Since only authorized users can access
Fo, neither the server nor unauthorized users can join Fo and Fs to possibly
reconstruct sensitive associations. Note that fragment Fo can both include
attributes considered sensitive per se and sensitive associations. This solution
completely departs from encryption, but it requires the data owner to locally store
a portion of her data and to cooperate with the external server in query evaluation.
Figure 4 illustrates an example of fragmentation for relation PATIENTS in Fig. 3a
that satisfies the confidentiality constraints in Fig. 3b. It is composed of fragment
Fo = {tid, SSN, Job, Disease} stored at the data owner side, and fragment
Fs = {tid, Name, YoB} stored at the external server side.

132 S. De Capitani di Vimercati et al.

PATIENTSk

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

Fig. 5 An example of encrypted and indexed version of relation PATIENTS in Fig. 3a

Encryption, fragmentation, and their combinations are powerful mechanisms for
protecting data confidentiality. However, there are still several open issues that need
to be further investigated. In fact, fragmentation and encryption break associations
among attribute values that could be considered of interest for final recipients, thus
compromising the utility of released data. Alternative solutions that protect data
while preserving a certain utility are therefore needed [25]. Also, confidentiality
constraints are defined over relation schemas, while they could be extended to
operate at the instance level (i.e., at the attribute values level). We also observe that
encryption and fragmentation work under the assumption that the data collection
never changes. Techniques supporting updates to the outsourced data collection
without compromising confidentiality still need to be designed.

3.2 Indexes

The adoption of encryption for protecting data confidentiality makes query exe-
cution difficult. In fact, confidentiality demands that data decryption must be
possible only at the user side. Solutions have been then developed to enable cloud
servers to execute queries directly on encrypted data. These solutions complement
the outsourced relation with a set of indexes, which are metadata information
built on the plaintext values of the attributes [44]. Formally, a relation r, defined
over schema R(a1, . . . ,an), is represented at the server side through an encrypted
relation rk over schema Rk(tid, enc, Ii1 , . . . , Ii j). Attribute tid is a numerical
attribute added to the original relation and acting as a primary key. Attribute
enc represents the encrypted tuple. Attribute Iil , l = 1, . . . , j, is the index defined
over attribute ail in R. Each tuple t in r is represented by an encrypted tuple
tk in rk where tk[enc]=Ek(t), with E a symmetric encryption function with
key k, and tk[Iil]= ι(t[ail]), with ι an index function defined over Dil . Note that
Rk has an index only for those attributes in R on which conditions need to be
evaluated. Figure 5 illustrates an example of encrypted and indexed version of
relation PATIENTS in Fig. 3a, with indexes over attributes Name (In), YoB (Iy),
Job (I j), and Disease (Id).

Selective and Fine-Grained Access to Data in the Cloud 133

Different indexing techniques have been proposed in the literature to support
different kinds of conditions. Most of these indexing techniques can be classified in
the following three classes, depending on how the corresponding index function ι
maps the original values to the corresponding index values.

• Direct index. Index function ι maps each plaintext value to a different index
value and vice versa. An example of direct index is represented by encryption-
based indexes (e.g., [22]). For each tuple t∈r, the value of index I , defined over
attribute a, is computed as ι(t[a])=Ek(t[a]). For instance, index Iy in relation
PATIENTSk in Fig. 5 represents an example of direct index over attribute YoB of
relation PATIENTS in Fig. 3a.

• Bucket-based index. Index function ι maps different plaintext values to the
same index value, generating collisions. Each plaintext value is however mapped
to only one index value. An example of bucket-based index is represented
by partition-based indexes, which partition the domain D of attribute a into
non-overlapping subsets of contiguous values, and associate a label with each
partition (e.g., [37]). For each tuple t∈r, the value of index I , defined over
attribute a, corresponds to the label of the unique partition to which value t[a]
belongs. For instance, index In in relation PATIENTSk in Fig. 5 represents an
example of partition-based index over attribute Name of relation PATIENTS in
Fig. 3a. The domain of attribute Name has been partitioned in four intervals
depending on the initial of the name, with labels: π for names with initial in
the range [A,B], ρ for names with initial in the range [C,D], σ for names
with initial in the range [E,F], and τ for names with initial in the range [G,H].
Another example of bucket-based index is represented by the hash-based indexes
(e.g., [17]). For each tuple t∈r , the value of index I , defined over attribute
a, is computed as ι(t[a])= h(t[a]), where h is a secure hash function that
generates collisions. For instance, index I j in relation PATIENTSk in Fig. 5
represents an example of hash-based index over attribute Job of relation
PATIENTS in Fig. 3a. The hash function adopted generates collisions and, in
particular, is defined as follows: h(Clerk)= h(Nurse)= δ , h(Doctor)= ε , and
h(Lawyer)= h(Teacher)= ζ .

• Flattened index. Index function ι maps each plaintext value to a set of index
values to guarantee that all index values have the same number of occurrences
(flattening). Each index value represents one plaintext value only. The index can
be obtained by applying an encryption function to the plaintext values of the
attribute and a post processing that flattens the distribution of the index values
(e.g., [45]). For instance, index Id in relation PATIENTSk in Fig. 5 represents
an example of flattened index over attribute Disease of relation PATIENTS in
Fig. 3a, where each index value has exactly one occurrence.

These indexing techniques support the partial evaluation at the server-side of
SQL queries. Given a query q, it is translated into a query qs executed at the server
side on the encrypted relation, and a query qc executed at the client side on the
decrypted result of qs. Query qc includes all conditions that cannot be evaluated
by the server and aims at eventually discarding all spurious tuples returned by
qs, that is, all tuples that do not satisfy the original query submitted by the user.

134 S. De Capitani di Vimercati et al.

The translation of query q into query qs and qc depends both on the kind of indexes
defined for the attributes involved in the query and on the kind of query. As an
example, consider query q= “SELECT Att FROM R WHERE Cond”, where Att⊆R
and Cond is a set of equality conditions of the form a = v, with a∈R and v a
constant value in the domain D of a. Each equality condition a = v is translated
into an equivalent condition I IN ι(v), with I the index defined over a and ι the
corresponding index function. Query q is then translated into query qs = “SELECT

enc FROM Rk WHERE Condk”, where Condk includes, for each equality condition
a = v, the equivalent condition I IN ι(v). The client will decrypt the result of qs

computed by the server, and will execute query qc that eliminates spurious tuples,
evaluates conditions that cannot be performed at the server side, and projects only
the attributes in Att to obtain the result of q. For instance, query q= SELECT Name
FROM PATIENTS WHERE Job= ‘Nurse’ AND Disease= ‘Asthma’ is translated
into query qs = SELECT enc FROM PATIENTSk WHERE I j = δ AND Id∈{η ,θ ,ω},
which returns the first and third tuples in Fig. 5. The client then filters spurious
tuples from the result of qs by evaluating query qc = SELECT Name FROM Dk(Resk)
WHERE Job= ‘Nurse’, where Resk is the encrypted result returned by the server
and D the symmetric decryption function with key k. Query qc returns the value of
attribute Name of tuple t1 in Fig. 3a, which corresponds to the result of the original
query q formulated by the user.

Indexing techniques specifically aimed at supporting the efficient evaluation of
range conditions are based on order preserving encryption schemas (e.g., [3, 45]).
Indexes that support aggregate functions and the basic arithmetic operators (i.e.,
+,−,×) rely on homomorphic encryption techniques (e.g., [32, 36]). Additional
indexing techniques, which cannot be classified as mentioned above, are based,
for example, on the definition of data structures (e.g., B+-tree) coupled with the
encrypted relation and stored at the server [22].

The definition of indexes over outsourced relations must balance precision in
query evaluation and privacy of the data [17]. In fact, more precise indexes provide
more efficient query execution, at the price of a greater exposure to possible privacy
violations. Also, the number of indexes complementing an outsourced relation
should be carefully tuned, since each additional index may cause a rapid growth
to the risk of privacy violations.

3.3 Selective Encryption

In many real-world systems, different users may have different privileges on the
outsourced data. Traditional access control architectures are based on the presence
of a trusted component, called reference monitor, that is in charge of enforcing
the access control policy defined by the data owner. In a cloud scenario, however,
neither the data owner (for efficiency reasons) nor the cloud server storing the data
(for privacy reasons) can enforce the access control policy. An interesting solution
addressing this issue consists in adopting selective encryption [24], meaning that

Selective and Fine-Grained Access to Data in the Cloud 135

t1 t2 t3 t4 t5 t6 t7 t8
A 1 0 0 1 0 1 1 0
B 0 1 0 1 1 1 1 0
C 0 0 0 1 0 1 1 1
D 0 1 1 1 1 1 0 0
E 0 1 0 0 1 1 1 0

Fig. 6 An example of access matrix regulating access to relation PATIENTS in Fig. 3a

different keys are used for encrypting different data. The encryption keys are
then (directly or indirectly) released only to the users authorized to access the
corresponding data. The idea of using different keys for enforcing access control
is not new and has been first introduced in other contexts. For instance, in [42]
the authors propose to store encrypted XML documents on (potentially insecure
and vulnerable) Web servers. The decisions about access rights to different portions
of an XML document can be made by the document creator and are immediately
applied to the XML document by using different encryption keys for different
portions of the same XML document. To enforce access restrictions, users then
obtain only the keys associated with the portions of XML documents for which they
have an access right. Other proposals put forward the idea of using hierarchical-
based access control in the context of distributed environments and broadcast pay
tv content (e.g., [12, 49]). In the remainder of this section, we describe the main
characteristics of the selective encryption approach in [24], specifically designed
for the cloud scenario.

Given a set U of users and a relation r, the authorization policy regulating access
to tuples in r is represented by an access matrix M, with a row for each user u∈U
and a column for each tuple t∈r. Cell M[u,t] is equal to 1 (0, respectively), if user
u can (cannot, respectively) access tuple t. For each tuple t, acl(t) denotes the set
of users who can access it (i.e., its access control list). For instance, Fig. 6 illustrates
an example of access matrix regulating access to the tuples of relation PATIENTS in
Fig. 3a by a set U = {A,B,C,D,E} of users.

The authorization policy defined by the data owner is translated into an equiva-
lent encryption policy. The encryption policy regulates keys used to encrypt tuples
as well as key distribution to users and must be equivalent to the access control
policy defined by the data owner, that is, each user can decrypt all and only the
tuples she is authorized to access.

The translation of an authorization policy into an equivalent encryption policy
is driven by two requirements: (i) each user must manage at most one key, and (ii)
each tuple must be encrypted at most once (i.e., no replication). To satisfy these two
desiderata, the approach in [24] adopts a key derivation technique based on public
tokens, which permit to compute the value of an encryption key starting from the
knowledge of another key and a piece of publicly available information [10]. Each
key ki is associated with a public label li and, given keys ki and k j, token tokeni, j

is computed as k j⊕h(ki,l j), with ⊕ the bitwise xor operator, and h a deterministic
cryptographic function. Token tokeni, j permits to derive key k j from ki and public
label l j. Key derivation techniques are based on the definition of a key derivation

136 S. De Capitani di Vimercati et al.

AB

A AC ABC

B AD ABD ABCD

C BC ACD

D BD BCD

CD

user key

A kA
B kB
C kC
D kD

tuple key

t1 kA
t2 kBD
t3 kD
t4 kABCD
t5 kBD
t6 kABCD
t7 kABC
t8 kC

a b c

Fig. 7 An example of encryption policy equivalent to the access control policy in Fig. 6,
considering the subset {A,B,C,D} of users

graph, specifying which keys can be derived from other keys. A key derivation
graph is a directed acyclic graph whose vertices represent keys, and whose edges
represent tokens. The existence of a path from key ki to key k j in the key derivation
graph denotes the fact that k j can be (directly or indirectly, via a chain of tokens)
derived from ki. A key derivation graph correctly enforces an authorization policy
M if each user ui∈U can derive, starting from the key she knows, the keys used
to encrypt all and only the tuples t j∈r that she can access (i.e., with M[ui,t j]= 1).
To define such a graph, the idea is to exploit the set containment relationship ⊆
over U . A key derivation graph induced by ⊆ over U has a vertex for each subset
of users in U and a path from vertex vi to vertex v j if vi represents a subset of the
users represented by v j. The correct enforcement of the policy is guaranteed if each
user knows the key of the vertex representing herself in the graph, and each tuple
is encrypted with the key of the vertex representing its acl. For instance, consider
the portion of the access matrix in Fig. 6 defined for the subset {A,B,C,D} of users.
The encryption policy in Fig. 7 is equivalent to the access control policy represented
by the first four rows in Fig. 6. For readability, each vertex in the graph of Fig. 7 is
labeled with the set of users it represents. As an example, user A can decrypt tuples
t1, t4, t6, and t7 since she can derive, starting from vertex labeled A, the keys with
which these tuples are encrypted.

Although effective for enforcing the authorization policy, the solution above
defines more keys and tokens than necessary. Since the number of tokens in the
system influences the access time, the proposal in [24] reduces the number of
tokens by removing from the key derivation graph the vertices and edges that are
not necessary to enforce M. The problem of minimizing the number of edges in a
key derivation graph is however NP-hard. In [24] the authors propose an heuristic
approach, which has been proved to obtain good results, based on two observations:
(i) the vertices needed for correctly enforcing an authorization policy are those
representing singleton sets of users and the acls of tuples in r; (ii) when two or

Selective and Fine-Grained Access to Data in the Cloud 137

more vertices have more than two common direct ancestors, the insertion of a
vertex representing the set of users corresponding to these ancestors reduces the
total number of tokens. Figure 8a illustrates an example of key derivation graph
obtained adopting the approach in [24] over the access matrix in Fig. 6. As it is
visible from the figure, the graph includes a vertex for each user and for each acl of
a tuple in the system. It also includes an additional vertex (i.e., ABC), introduced to
limit the number of tokens in the system. Clearly, the encryption policy in Fig. 8 is
more convenient than the one in Fig. 7, as it reduces both the number of keys and
the number of tokens in the system, while managing an additional user.

A

B ABC

C ABCD

ABCDE

D ABCE

E BDE

user key

A kA
B kB
C kC
D kD
E kE

tuple key

t1 kA
t2 kBDE
t3 kD
t4 kABCD
t5 kBDE
t6 kABCDE
t7 kABCE
t8 kC

a b c

Fig. 8 An example of encryption policy equivalent to the access control policy in Fig. 6

Since the keys used to encrypt tuples depend on their access control lists,
whenever the authorization policy changes, the tuples involved in the policy update
may need to be re-encrypted to guarantee the equivalence of the encryption policy.
For instance, assume that user E is revoked the privilege to read tuple t6. Such a tuple
should be first decrypted using key kABCDE , and then encrypted using key kABCD.
However, re-encryption requires the direct involvement of the data owner and can
be computationally expensive. The number of re-encryption operations are therefore
minimized by adopting two layers of encryption that allow the server to manage
policy update operations [24]. The Base Encryption Layer (BEL) is applied by the
data owner before transmitting the relation to the server and consists in encrypting
the tuples according to the authorization policy existing at initialization time. The
Surface Encryption Layer (SEL) is performed by the server over the tuples already
encrypted by the data owner. It enforces the dynamic changes over the policy. The
basic idea consists in over-encrypting the tuples so that a user can access a tuple
only if she knows or can derive the key used for encrypting the tuples at both levels.

The solution in [24] enforces read privileges only and has been complemented
with another technique that allows the management of write operations [23]. This
work associates each tuple with a write tag. The write tag is a random value chosen
by the data owner independently from the tuple content, and is encrypted with a key

138 S. De Capitani di Vimercati et al.

known only to users who can modify the tuple and to the external server. The server
will then enforce a write operation on a tuple only if the requesting user proves to
know the write tag of the tuple. The proposal in [23] extends the key derivation
graph with a key for the server and the keys necessary for protecting write tags. For
instance, consider the read privileges in Fig. 6 over relation PATIENTS in Fig. 3a, and
assume that: tuples t1, t4, and t7 can be modified by user A only; tuples t2 and t6
can be modified by B, D, and E; tuples t3 and t5 can be modified by D; and tuple t8
can be modified by C. Figure 9 illustrates the encryption policy in Fig. 8, extended
to properly enforce write privileges. In the figure, we denote the external server as S.

A AS

B ABC

C CS ABCD

S ABCDE

D DS ABCE

E BDE BDES

user key

A kA
B kB
C kV
D kD
E kE

tuple read key write key

t1 kA kAS
t2 kBDE kBDES
t3 kD kDS
t4 kABCD kAS
t5 kBDE kDS
t6 kABCDE kBDES
t7 kABCE kAS
t8 kC kCS

a b c

Fig. 9 Encryption policy in Fig. 8, extended to enforce write authorizations

Open issues that still need to be addressed are related to the expressive power
of the supported access control policy, especially considering the ever-increasing
bring-your-own-device (BYOD) trend. In fact, it would be interesting to develop
solutions that will allow the specification of fine-grained restrictions, based on the
users’ context and on the specific device adopted for accessing data.

4 Indexes and Fragmentation

The fragmentation works illustrated in Sect. 3.1 permit to delegate to the server
the evaluation of any condition over attributes appearing plaintext in a fragment.
However, the client still needs to evaluate those queries that operate on encrypted
attributes, or that involve attributes that are not represented in plaintext in the same
fragment. For instance, consider the fragmentation in Fig. 4 obtained in the multiple
fragments scenario of relation PATIENTS in Fig. 3a. Query q= SELECT Name FROM

PATIENTS WHERE YoB= 1980 AND Disease= ‘Asthma’ cannot be evaluated
by the server, since attributes YoB and Disease do not appear in the clear in the
same fragment and the server can neither decrypt attribute enc nor join F1 and F3.
Hence, one of the two conditions in q must be evaluated by the client. To mitigate

Selective and Fine-Grained Access to Data in the Cloud 139

the client’s overhead in query evaluation, fragments can be complemented with
indexes over encrypted attributes. Figure 10 illustrates three versions of fragment
F1 in Fig. 4, complemented with index Id over attribute Disease, which has
been computed using each of the three kinds of indexes illustrated in Sect. 3.2.
The presence of indexes in a fragment could however cause unintended leakage
of sensitive information [28]. The exposure to leakage varies depending on the
knowledge that a curious observer (e.g., the external server) can exploit and the kind
of indexes. In particular, the following two kinds of knowledge can be exploited for
breaching data confidentiality.

F1
salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 α
s12 Oij3X. Bob 1980 α
s13 9kEf6? Carol 1970 α
s14 ker5/2 David 1970 β
s15 C:mE91 Eva 1970 β
s16 4lDwqz Frank 1960 γ
s17 me3,op Gary 1960 γ
s18

s11
s12
s13
s14
s15
s16
s17
s18

s11
s12
s13
s14
s15
s16
s17
s18zWf4g> Hilary 1960 δ

F1
salt enc Name YoB Id

Bd6!l3 Alice 1980 ε
Oij3X. Bob 1980 ε
9kEf6? Carol 1970 ε
ker5/2 David 1970 η
C:mE91 Eva 1970 η
4lDwqz Frank 1960 θ
me3,op Gary 1960 θ
zWf4g> Hilary 1960 ε

F1
salt enc Name YoB Id

Bd6!l3 Alice 1980 κ
Oij3X. Bob 1980 λ
9kEf6? Carol 1970 μ
ker5/2 David 1970 ν
C:mE91 Eva 1970 ξ
4lDwqz Frank 1960 π
me3,op Gary 1960 ρ
zWf4g> Hilary 1960 σ

a b c

Fig. 10 Fragment F1 in Fig. 4 complemented with a direct index (a), a bucket-based index (b), and
a flattened index (c) over attribute Disease

Disease

Asthma
Asthma
Asthma
Bronchitis
Bronchitis
Gastritis
Gastritis
Diabetes

Name Disease

Alice Asthma

a b

Fig. 11 An example of vertical (a) and horizontal (b) knowledge by an observer

• Vertical knowledge is the knowledge of the projection of attribute a over relation
r , and is due to the presence of attribute a in the clear in one fragment and
indexed in other fragments. Vertical knowledge does not require any additional
external information for an observer since, apart from the case where the attribute
appears in a singleton constraint, it refers to information immediately present in
other accessible fragments. For instance, fragment F3 in Fig. 4 makes visible the
plaintext values (and their number of occurrences) of attribute Disease (see
Fig. 11a).

• Horizontal knowledge is the knowledge of the presence of a tuple t (or a set
thereof) in r, and is due to external knowledge by an observer. For instance, an
observer may know that Alice suffers from Asthma (see Fig. 11b).

140 S. De Capitani di Vimercati et al.

Let us now examine the exposure risk of indexed fragments under the assump-
tions of horizontal and vertical knowledge and of the presence of indexes belonging
to the three categories discussed in Sect. 3.2 [28].

• Direct index. Index function ι preserves the frequency distribution of plaintext
values, which can be exploited to reconstruct the value-index association by an
observer with vertical and/or horizontal knowledge. Vertical knowledge permits
to precisely reconstruct the value-index association for values characterized by
a unique number of occurrences (outliers). For instance, consider the indexed
fragment in Fig. 10a and the vertical knowledge in Fig. 11a. It is immediate to
see that ι(Asthma)=α and ι(Diabetes)= δ since these are the only plaintext
and index values with 3 occurrences and 1 occurrence, respectively. Hence,
an observer can infer that Alice, Bob, and Carol have Asthma and Hilary has
Diabetes. Horizontal knowledge permits to precisely reconstruct the value-index
association for the plaintext value v= t[a] known by the observer, exposing
all the tuples in r with value v for attribute a. For instance, in the example
above, knowing that Alice suffers from Asthma permits an observer to infer that
ι(Asthma)=α and then that also Bob and Carol suffer from the same illness.

• Bucket-based index. Index function ι does not preserve the frequency distribution
of plaintext values. However, the index value corresponding to plaintext value
v will have a frequency equal to or higher than (in case of collisions) the
frequency of v. Values with a high number of occurrences (outliers) are then
still exposed. Vertical knowledge permits to identify the index values associated
with frequent plaintext values, and then to reconstruct the value-index association
for such values with a known probability of error. For instance, consider the
indexed fragment in Fig. 10b and the vertical knowledge in Fig. 11a. Clearly,
ι(Asthma)= ε since this is the only index value with at least 3 occurrences. Also,
ι(Diabetes)= ε since Diabetes is the only plaintext value with 1 occurrence.
An observer can then infer that three patients among Alice, Bob, Carol, and
Hilary has Asthma (each with probability 0.75) and one has Diabetes (each
with probability 0.25). Horizontal knowledge permits to identify the index
value representing the known plaintext value v= t[a]. This index value may
however correspond also to other plaintext values, limiting the observer’s ability
to precisely reconstruct value-index associations. For instance, in the example
above, knowing that Alice suffers from Asthma permits an observer to infer
that ι(Asthma)= ε . However, nothing can be said about Bob, Carol, and Hilary
since ε could also represent other plaintext values (different from Asthma). By
combining horizontal with vertical knowledge, however, she can infer that two
among Bob, Carol, and Hilary suffer from Asthma (each with probability 0.66)
and one suffers from Diabetes (each with probability 0.33).

• Flattened index. Index function ι flattens the frequency distribution of index val-
ues. Vertical knowledge does not help in establishing correspondences between
plaintext values and index values. Horizontal knowledge permits to identify one
of the index values representing the known plaintext value v= t[a], exposing
only the tuples associated with this index value (in contrast to the possibly larger

Selective and Fine-Grained Access to Data in the Cloud 141

F1

salt enc Name YoB Id

s11
s12
s13

s14
s15

s16
s17

s18

Bd6!l3 Alice 1980 α
Oij3X. Bob 1980 α
9kEf6? Carol 1970 δ
ker5/2 David 1970 β
C:mE91 Eva 1970 β
4lDwqz Frank 1960 γ
me3,op Gary 1960 γ
zWf4g> Hilary 1960 δ

Fig. 12 Fragment F1 in Fig. 4 complemented with a flattened index with collisions over attribute
Disease

set of tuples with value v for a). For instance, consider the indexed fragment in
Fig. 10c and the horizontal knowledge in Fig. 11b. An observer can only learn
that ι(Asthma)= κ . However, no other association is exposed, because κ has
only one occurrence in F1 (although Asthma has frequency 3 in F3).

An index function ι that flattens the frequency distribution of index values and
that generates collisions provides protection against both horizontal and vertical
knowledge. In fact, as illustrated above, inference attacks caused by vertical
knowledge can be counteracted by flattening the frequency distribution of index
values. Inference attacks caused by horizontal knowledge are mitigated by index
functions that map different plaintext values to the same index value, generating
collisions. For instance, Fig. 12 illustrates fragment F1 in Fig. 4 complemented with
a flattened index with collisions over attribute Disease. This indexed fragment is
protected against both vertical and horizontal knowledge in Fig. 11. Indeed, vertical
knowledge cannot be exploited for frequency-based attacks (all the index values
have two occurrences). Horizontal knowledge permits to infer that ι(Asthma)=α
but, since ι generates collisions, the observer cannot say anything about the disease
from which Bob suffers. Although the proposal in [28] is focused on the adoption
of one index, the discussion can easily be extended to the case where fragments
are complemented with multiple indexes. In fact, flattening and collisions provide
adequate protection in different scenarios (e.g., multiple indexes in one fragment,
a same attribute indexed in different fragments, two attributes appearing one in
plaintext and the other indexed in one fragment and reversed in another fragment).

Although effective to protect data at rest, a flattened index function with
collisions has the disadvantage of reducing the performance in query evaluation.
In fact, flattening requires to retrieve different index values when searching for one
plaintext value, and collisions require a post-processing at the client side to remove
spurious tuples in the query result computed by the server. As an example, consider
fragment F1 in Fig. 12, condition Disease= ‘Asthma’ translates into condition Id

IN {α ,δ}. The evaluation of this condition would however return a tuple with value
Diabetes for attribute Disease (i.e., tuple t8), since Asthma and Diabetes are both
mapped to value δ . Also, flattened indexes with collisions remain still vulnerable
to dynamic observations (i.e., to adversaries who can observe users’ queries). In

142 S. De Capitani di Vimercati et al.

t acl(t)

A
BDE
D
ABCD
BDE
ABCDE
ABCE
C

PATIENTS
SSN Name YoB Job Disease

123456789 Alice 1980 Clerk Asthma

456789123 David 1970 Lawyer Bronchitis

678912345 Frank 1960 Doctor Gastritis
789123456 Gary 1960 Teacher Gastritis

PATIENTSk

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

t1
t2
t3
t4
t5
t6
t7
t8

t1
t2
t3
t4
t5
t6
t7
t8

a b c

Fig. 13 Knowledge of user A over relation PATIENTS (b) and PATIENTSk (c)

fact, by observing a long enough sequence of queries, an observer can easily infer
the index values to which each plaintext value has been mapped, since they always
appear together in query conditions. With reference to the example above, every
query including condition Disease= ‘Asthma’ is translated into a query including
condition Id IN {α ,δ}. An observer can then easily infer that α and δ represent the
same plaintext value (Asthma, in our example). The protection against dynamic
observations represents an open issue that still needs to be addressed, along with
the problem of defining an efficient index function that provides both flattening and
collisions.

5 Indexes and Selective Encryption

Selective encryption approaches illustrated in Sect. 3.3 enforce access control
restrictions over outsourced data by guaranteeing that each user can decrypt all and
only the tuples she is authorized to access. However, when data are made selectively
available, the combination of selective encryption with indexes used for enabling
efficient query execution on encrypted data may open the door to inferences. In fact,
users may have visibility of indexes even of tuples they are not allowed to access.
Such visibility, together with their ability to view data for which they are authorized,
can allow them to possibly infer plaintext values of tuples they should not be able
to read. In the following, for clarity in the exposition but without loss of generality,
we will refer the discussion to one attribute a only.

The knowledge that a user u can exploit for inferences can be summarized as
follows: (i) index function ι used to define index I over attribute a (necessary to
translate user’ queries into queries that operate at the server side); (ii) plaintext
tuples that the user can access (i.e., t such that u∈acl(t)); (iii) all the encrypted tuples
in rk. For instance, consider relation PATIENTS in Fig. 3a and the authorization
policy in Fig. 6 (which is also summarized in Fig. 13a for the reader’s convenience),
Fig. 13b,c illustrate the knowledge of user A over the plaintext and encrypted
relation. Gray cells denote values that A is not authorized to read.

The information that a user with this knowledge can infer depends on the kind of
index adopted (see Sect. 3.2), as illustrated in the following [27].

Selective and Fine-Grained Access to Data in the Cloud 143

t acl(t)

A
BDE
D
ABCD
BDE
ABCDE
ABCE
C

SSN Name YoB Job Disease
123456789 Alice 1980 Clerk Asthma

1980 Asthma
1970 Asthma

456789123 David 1970 Lawyer Bronchitis
1970 Bronchitis

678912345 Frank 1960 Doctor Gastritis
789123456 Gary 1960 Teacher Gastritis

1960

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

t1
t2
t3
t4
t5
t6
t7
t8

t1
t2
t3
t4
t5
t6
t7
t8

PATIENTS PATIENTSka b c

Fig. 14 Knowledge inferred by user A over relation PATIENTS

• Direct index. Index function ι is a bijective function that maps each plaintext
value to one index value (and vice versa). It then exposes all the tuples with
the same plaintext value for attribute a of a tuple that the user is authorized to
access. For instance, index Iy over attribute YoB in Fig. 13c has been computed
using a direct index function. Since user A can access tuple t1, she knows that
ι(1980)=α . She can then infer that t2[YoB]= 1980, even if she is not authorized
to access tuple t2. In a similar way, A can also infer that ι(1970)= β and that
ι(1960)= γ (i.e., she knows the plaintext value of attribute YoB of each tuple
in PATIENTS). The user also knows index function ι . Hence, she can compute
the index value ι(v) associated with each value v in the domain of attribute a,
and possibly reconstruct the value that attribute a assumes in each tuple t of the
outsourced relation, independently from her access privileges over t.

• Bucket-based index. Index function ι is a surjective function that maps multiple
plaintext values to one index value. The inference risks described for direct
indexes are mitigated by collisions. In fact, multiple occurrences of a same index
value may correspond to different plaintext values. The user’s knowledge of
index function ι could however reduce the uncertainty over the value assumed
by attribute a in a tuple t that she is not authorized to access. For instance, index
I j over attribute Job in Fig. 13c has been computed using a bucket-based index
function. Since user A can access tuple t1, she knows that ι(Clerk)= δ . However,
she does not know with certainty whether t3[Job]=Clerk and t8[Job]=Clerk
since function ι may generate collisions and map different plaintext values to
index value δ .

• Flattened index. Index function ι is an injective function that maps a plaintext
value to multiple index values, guaranteeing a flat distribution of the number of
occurrences of index values. Like direct indexes, flattened indexes expose all the
tuples with the same plaintext value for attribute a of a tuple that the user is autho-
rized to access. In fact, when decrypting a tuple t that she can access, the user
knows one of the index values representing value v= t[a]. By computing ι(v),
she exactly knows which tuples in rk have value v for attribute a. For instance,
index Id over attribute Disease in Fig. 13c has been computed using a flattened
index function. Since user A can access tuple t1, she knows that ι(Asthma)=η
and, since she can compute ι(v) for any v in the domain of attribute Disease,
she can compute the set of index values representing Asthma, that is, {η ,θ ,ω}.
She can then infer that t2[Disease]= t3[Disease]=Asthma.

144 S. De Capitani di Vimercati et al.

PATIENTSk PATIENTSk

tid enc Iy Iy

1 T8/lO? αA

2 1wfTg< αB , αD , αE

3 vFe!d2 βD

4 f3iJ:y βA , βB , βC , βD

5 ;x0d9D βB , βD , βE

6 kO6i)G γA , γB , γC , γD , γE

7 u2eW[b γA , γB , γC , γE

8 vY7’.1 γC

tid enc

1 T8/lO? αA

2 1wfTg< αB , αD , αE

3 vFe!d2 βD

4 f3iJ:y βA, βB , βC , βD

5 ;x0d9D βB , βD , βE

6 kO6i)G γA, γB , γC , γD , γE

7 u2eW[b γA, γB , γC , γE

8 vY7’.1 γC

a b

Fig. 15 An example of encrypted and indexed version of relation PATIENTS with index Iy over
YoB computed using a user-dependent function (a) and a salted user-dependent function (b)

Inferences by user A over relation PATIENTS are summarized in Fig. 14, where
light-gray cells represent values, reported in italic, that A is not authorized to access
but that she can infer from her knowledge.

From the observations above, we note that inference is mainly caused by the
presence of the same index value associated with tuples characterized by different
authorizations. In [27] the authors proposed a solution, which is focused on direct
indexes since they represent the worst case scenario, based on the principle that
different occurrences of the same index value must be mapped to different index
values when they should be visible to different subsets of users. The index value to
which t[a] should be mapped therefore depends, not only on value v= t[a], but also
on acl(t). To this purpose, each user u has its own index function ι u , which depends
on a private piece of information that she shares with the data owner. Given a tuple
t, the data owner computes a different index value ιu (t[a]) for each u∈acl(t). Each
user will then use her index function ιu to formulate queries to be evaluated by the
external server over indexes. For instance, Fig. 15a illustrates relation PATIENTSk,
where the index over attribute YoB has been computed adopting a user-dependent
function. In the figure, for simplicity, we indicate with a sub-script the user whose
index function generated the value (i.e., vu is a value generated by ιu). Note that
vui �= vu j .

Since all the index values associated with a specific plaintext value of attribute
a are visible to all the users in the system, the adoption of user-dependent index
functions is not sufficient to block all the inferences. In fact, tuples sharing the
same value for attribute a that are characterized by different but overlapping acls,
called conflicting tuples, are exposed to inferences by users who can access at least
one of these tuples. For instance, with reference to relation PATIENTSk in Fig. 15a,
user A cannot exploit her knowledge of tuple t1 to infer the value of t2[YoB].
However, by observing that βD appears in tuples t4 together with βA, A can infer
that βD represents value 1970 and hence that t3[YoB]= t4[YoB]= t5[YoB]= 1970.
To block this inference channel, conflicting tuples must be associated with disjoint
sets of index values. To impose diversity of indexes, the value computed by index
function ιu is differentiated by applying different randomly generated salts to

Selective and Fine-Grained Access to Data in the Cloud 145

conflicting tuples. For instance, Fig. 15a illustrates relation PATIENTSk, where the
index over attribute YoB has been computed adopting a salted user-dependent
function. In the figure, we denote salted versions of value v as v′ and v′′.

While effective, the solution illustrated above presents similar privacy risks to the
one described in Sect. 4. More precisely, this indexing technique remains vulnerable
to dynamic observations, since monitoring a sufficient number of queries would
permit an observer to reconstruct which (salted) index values represent the same
plaintext value. Furthermore, collusion between authorized users and the external
server may put data confidentiality at risk. The protection against these threats still
remains an open issue.

6 Conclusions

Cloud computing offers a variety of new opportunities to users and companies,
and many efforts have been therefore dedicated to the design of cloud-based ser-
vices, applications, and infrastructures. While appealing, cloud computing however
introduces new security and privacy issues. In this chapter, we analyzed the data
protection issues, and described approaches for the protection of data confidentiality,
and for the efficient and selective access to data. We also illustrated open problems
arising from the combined application of such solutions and highlighted possible
directions to address them.

Acknowledgements The chapter is based on joint work with Sushil Jajodia and Stefano Para-
boschi. This work was supported in part by the Italian Ministry of Research within PRIN
2010–2011 project “GenData 2020” (2010RTFWBH), and by Google under the Google Research
Award program.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R.,
Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure
database services. In: Proc. of CIDR 2005. Asilomar, CA, USA (January 2005)

2. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.: Sovereign joins. In: Proc. of ICDE 2006.
Atlanta, GA, USA (April 2006)

3. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: Proc. of SIGMOD 2004. Paris, France (June 2004)

4. Ardagna, C.A., Camenisch, J., Kohlweiss, M., Leenes, R., Neven, G., Priem, B., Samarati, P.,
Sommer, D., Verdicchio, M.: Exploiting cryptography for privacy-enhanced access control: A
result of the PRIME project. JCS 18(1), 123–160 (2010)

5. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Minimizing disclosure of private information in credential-based interactions: A graph-based
approach. In: Proc. of PASSAT 2010. Minneapolis, MN, USA (August 2010)

146 S. De Capitani di Vimercati et al.

6. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Supporting privacy preferences in credential-based interactions. In: Proc. of WPES 2010.
Chicago, IL, USA (October 2010)

7. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Minimising disclosure of client information in credential-based interactions. IJIPSI 1(2/3),
205–233 (2012)

8. Ardagna, C.A., De Capitani di Vimercati, S., Paraboschi, S., Pedrini, E., Samarati, P.,
Verdicchio, M.: Expressive and deployable access control in open Web service applications.
IEEE TSC 4(2), 96–109 (April-June 2011)

9. Ardagna, C.A., Jajodia, S., Samarati, P., Stavrou, A.: Providing users’ anonymity in mobile
hybrid networks. ACM TOIT (2013)

10. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key management for
access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (January 2009)

11. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: On the propagation of faults and
their detection in a hardware implementation of the advanced encryption standard. In: Proc. of
ASAP 2002. San Jose, CA, USA (July 2002)

12. Blanton, M., Frikken, K.: Efficient multi-dimensional key management in broadcast services.
In: Proc. of ESORICS 2010. Athens, Grece (September 2010)

13. Bonatti, P., Samarati, P.: A uniform framework for regulating service access and information
release on the Web. JCS 10(3), 241–272 (2002)

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: Proc. of EUROCRYPT 2003. Warsaw, Poland (May 2003)

15. Calì, A., Martinenghi, D.: Querying data under access limitations. In: Proc. of ICDE 2008.
Cancun, Mexico (April 2008)

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In: Proc. of EUROCRYPT 2001. Innsbruck, Austria
(May 2001)

17. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM TISSEC 8(1),
119–152 (February 2005)

18. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
ACM 45(6), 965–981 (April 1998)

19. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biometrics: Design and
implementation of a multimodal verification system. In: Proc. of ACSAC 2008. Anaheim, CA,
USA (December 2008)

20. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Keep a few: Outsourcing data while maintaining confidentiality. In: Proc. of ESORICS 2009.
Saint Malo, France (September 2009)

21. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Combining fragmentation and encryption to protect privacy in data storage. ACM TISSEC
13(3), 22:1–22:33 (July 2010)

22. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of CCS 2003. Washing-
ton, DC, USA (October 2003)

23. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G. Paraboschi, S., Samarati, P.:
Enforcing Dynamic Write Privileges in Data Outsourcing. COSE 39(A), 47–63 (November
2013)

24. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption
policies for regulating access to outsourced data. ACM TODS 35(2), 12:1–12:46 (April 2010)

25. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Fragments
and loose associations: Respecting privacy in data publishing. PVLDB 3(1), 1370–1381
(September 2010)

26. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Authorization
enforcement in distributed query evaluation. JCS 19(4), 751–794 (2011)

Selective and Fine-Grained Access to Data in the Cloud 147

27. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Private data
indexes for selective access to outsourced data. In: Proc. of WPES 2011. Chicago, IL, USA
(October 2011)

28. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: On
information leakage by indexes over data fragments. In: Proc. of PrivDB 2013. Brisbane,
Australia (April 2013)

29. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient and
private access to outsourced data. In: Proc. of ICDCS 2011. Minneapolis, MN, USA (June
2011)

30. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Supporting
concurrency in private data outsourcing. In: Proc. of ESORICS 2011. Leuven, Belgium
(September 2011)

31. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Protecting data in outsourcing scenarios.
In: Das, S., Kant, K., Zhang, N. (eds.) Handbook on Securing Cyber-Physical Critical
Infrastructure. Morgan Kaufmann (2012)

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009.
Bethesda, MA, USA (May 2009)

33. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless Oblivious RAM simulation. In: Proc. of SODA 2012. Kyoto, Japan
(January 2012)

34. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc. of ICDE 2002.
San Jose, CA, USA (February 2002)

35. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases in database
as a service model. In: Proc. of DBSec 2003. Estes Park, CO, USA (August 2003)

36. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over
encrypted relational databases. In: Proc. of DASFAA 2004. Jeju Island, Korea (March 2004)

37. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI, USA (June 2002)

38. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proc. of ESTEL 2012.
Rome, Italy (October 2012)

39. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource management
in cloud computing. In: Proc. of CSE 2012. Paphos, Cyprus (December 2012)

40. Kärger, P., Olmedilla, D., Balke, W.T.: Exploiting preferences for minimal credential disclosure
in policy-driven trust negotiations. In: Proc. of SDM 2008. Auckland, New Zealand (August
2008)

41. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index structures
for outsourced databases. In: Proc. of SIGMOD 2006. Chicago, IL, USA (June 2006)

42. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: Proc. of
VLDB 2003. Berlin, Germany (September 2003)

43. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in outsourced databases.
ACM TOS 2(2), 107–138 (May 2006)

44. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios: Issues and
directions. In: Proc. of ASIACCS 2010. Beijing, China (April 2010)

45. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML databases.
In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

46. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance. In: Proc. of
CIKM 2008. Napa Valley, CA, USA (October 2008)

47. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc. of CCS
2012. Raleigh, NC, USA (October 2012)

48. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In: Proc. of CCS 2008. Alexandria, VA, USA
(October 2008)

49. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs. IEEE/ACM
TON 8(1), 16–30 (February 2000)

148 S. De Capitani di Vimercati et al.

50. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proc. of VLDB
2007. Vienna, Austria (September 2007)

51. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced databases.
In: Proc. of EDBT 2008. Nantes, France (March 2008)

52. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in
outsourced databases. In: Proc. of SIGMOD 2009. Providence, RI, USA (June-July 2009)

53. Yao, D., Frikken, K., Atallah, M., Tamassia, R.: Private information: To reveal or not to reveal.
ACM TISSEC 12(1), 1–27 (October 2008)

Enabling Collaborative Data Authorization
Between Enterprise Clouds

Meixing Le, Krishna Kant, and Sushil Jajodia

Abstract We consider a collaborative enterprise computing environment where a
group of enterprises or parties maintain their own relational databases to which
they allow restricted access to other parties. The access is regulated by means of
a set of authorization rules that may be defined using relational calculus, including
joins over relations from multiple parties. In this chapter, we provide an overview
of the issues that arise in such an environment and some solutions. In particular,
since individual parties are likely to formulate the rules in a somewhat piecemeal
manner, the rules may be mutually inconsistent or inadequate to answer the desired
queries. We address the issues of detecting inconsistencies and methods for fixing
them. We also discuss the question of enforceability (or adequacy) of the rules.
When rules, as given, are not enforceable, we can either augment the access rights
or employ trusted third parties to perform unenforceable operations. We also address
the issue of handling dynamic changes to rules. Finally, we consider the problem of
generating efficient query plans in this environment.

1 Introduction

Enterprises increasingly need to collaborate to provide rich business services to
clients and with minimal manual intervention. This requires the enterprises involved
in the service path to share data in an orderly manner. For instance, an automated
determination of patient coverage and costs requires that a hospital and insurance
company be able to make certain queries against each others’ databases. Similarly,
to arrange for automated shipping of merchandise and to enable automated status
checking, the e-commerce vendor and shipping company should be able to exchange
relevant information, perhaps in form of database queries. To achieve collaborative

M. Le (�) • K. Kant • S. Jajodia
Center for Secure Information Systems, George Mason University, Fairfax, VA, USA
e-mail: mlep@gmu.edu; kkant@gmu.edu; jajodia@gmu.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__7,
© Springer Science+Business Media New York 2014

149

mailto:mlep@gmu.edu
mailto:kkant@gmu.edu
mailto:jajodia@gmu.edu

150 M. Le et al.

computation, data owners need to provide access to their data to other parties based
on the needs of the allowable queries. It is also important not to release more
information than necessary. For example, an insurance company may wish to access
patient data at hospital for the individuals that it insures. However, it would be highly
undesirable for the hospital to release information about patients that are not the
clients of the said insurance company. In relational terms, this means that the access
granted to the insurance company is over the join of its client table and hospital’s
patient table projected over the desired columns. With multiple parties involved,
each with their own data sharing and protection requirements, the picture could get
rather complicated, thereby leading to the problems such as conflicts between rules
or insufficient access to answer the desired queries. These are the issues of primary
concern in this chapter. In the rest of the chapter, we introduce the cooperative
data access model and problems in Sect. 2. We discuss the mechanisms to solve
the various problems in Sect. 3. In Sect. 4, we discuss use of trusted third parties for
collaboration and handling of authorization rule changes. At last, we conclude our
discussion and list interesting future directions for research in Sect. 5.

2 Cooperative Data Access Model

Without loss of generality, we assume each collaborative party or enterprise
maintains its own data in its private cloud. Such a party may have its own data
center running the private cloud or possibly running the cloud on infrastructures
rented from a provider. We assume here that all data is stored in relational form
and structured in a standard form such as BCNF. The latter property allows for
lossless joins over keys. It may be possible to extend the analysis to more general
data models, but that aspect is beyond the scope of this chapter.

As the enterprises need to collaborate with one another to fulfill the desired
business requirements, they will negotiate among themselves suitable access rights.
For instance, an insurance company may request access to some hospital data,
perhaps in exchange for providing some of its data to the hospital. We define the data
access privileges using a set of authorization rules. Since we are dealing with the
relational model, the authorization rules are made over the original tables belonging
to enterprises or over the lossless joins (��) over two or more relational tables.
The join operations, coupled with appropriate projection and selection operations
define the access restrictions. In order to enable working with only the schemas, in
this chapter, we do not consider the selection operation. We use the join operation
over the relations because it can implicitly constrain the tuples being released to
the authorized party and it meets the requirement of cooperative data access. For
example, if the hospital thinks the insurance company should be able to obtain
the patient information but only these patients who have plans with this insurance
company, then the authorization given to the insurance company is defined only on
the join result of hospital and insurance tables.

Enabling Collaborative Data Authorization Between Enterprise Clouds 151

We assume that the authorization rules themselves are not considered sensitive
and are visible to all parties. In cases where this is not desirable, all the rules could
be managed by a trusted third party but this only affects where the algorithms
considered in this chapter can run. In either case, we assume that all rules are
available in a central place for manipulations. The purpose of cooperative data
access is for parties to run queries against one-another’s databases. Thus, we first
need to check if the information requested by the querier (or client) is authorized,
and if so build a query execution plan to retrieve the desired data. The query
execution plan must follow the given authorization rules at every step. Figure 1
shows a possible architecture for this environment. As a client initiates a query, it is
first handled by the query planner which checks authorizations and generates a safe
query plan.

Distributed query planner

Catalog

Authorization
rules

Authorization check and
server assignment

Query planning

Cloud
I

Cloud
N…

metadata

Client

Safe query plan

Safe query plan

Query results

Query

Fig. 1 Centralized authorization rule control

For simplicity, we assume simple select-project-join queries (e.g., no cyclic join
schemas or queries). In general, the join operation cannot be done on any two
arbitrary attributes, and the possible joins between different relations are usually
limited. We assume that the join schema is given – i.e., all the possible join attributes
between relations are known. Each join in the schema is assumed to be lossless so
that a join attribute is always a key attribute of some relations. We also assume
that the collaborating parties are non-malicious and strictly follow the given rules.
Finally, we assume that there is only one authorization rule over each distinct join
operation.

2.1 Notations and Definitions

We first introduce our authorization model. An authorization rule rt is a triple
[At , Jt ,Pt], where Jt is called the join path of the rule, At is the authorized attribute
set, and Pt is the party authorized to access the data.

152 M. Le et al.

Definition 1. A join path is the result of a series of join operations over a set of
relations R1,R2 . . .Rn with the specified equi-join predicates (Al1,Ar1),(Al2,Ar2) . . .
(Aln,Arn) among them, where (Ali,Ari) are the join attributes from the two relations.
We use JRt to indicate the set of relations in a join path Jt . The length of a join path
is the cardinality of JRt .

We can consider a join path as the result of join operations with all the attributes
intact. Then At can be interpreted as set of attributes projected on the join path
accessible to party Pt . Table 1 shows an example set of rules given to the cooperative
parties. The first column is the rule number, the second column gives the attribute
set of the rules, the third column is the join path, and the last column shows the
authorized parties of the rule. Only one rule can be given to a party on a given join
path. We assume that each authorization rule includes all of the key attributes of the
relations that appear in the join path. In other words, a rule has all the join attributes
on its join path. We believe that this is a reasonable assumption as in most cases
when the information is released, it is released along with the key attributes.

Table 1 corresponds to our running example throughout this chapter. It concerns
an e-commerce scenario with four parties (or Enterprises): (a) E-commerce, denoted
as E , is a company that sells products online, (b) Customer_Service, denoted C,
that provides customer service functions (potentially for more than one company),
(c) Shipping, denoted S, provides shipping services (again, potentially to multiple
companies), and finally (d) Warehouse, denoted W , is the party that provides storage
services. To keep the example simple, we assume that each party has but one relation
described as follows:

Table 1 Authorization rules for e-commerce cooperative data access

Rule no. Authorized attribute set Join path Party

1 {pid, location} W PW

2 {oid, pid} E PW

3 {oid, pid, location} E ��pid W PW

4 {oid, pid, total} E PE

5 {oid, pid, total, issue} E ��oid C PE

6 {oid, pid, total, issue, address} S ��oid E ��oid C PE

7 {oid, pid, location, total, address} S ��oid E ��pid W PE

8 {oid, pid, issue, assistant, total, address, delivery} S ��oid E ��oid C ��pid W PE

9 {oid, address, delivery} S PS

10 {oid, pid, total} E PS

11 {oid, pid, total, address, delivery} E ��oid S PS

12 {oid, pid, total, location} E ��pid W PS

13 {oid, location, pid, total, address, delivery} S ��oid E ��pid W PS

14 {oid, pid} E PC

15 {oid, issue, assistant} C PC

16 {oid, pid, issue, assistant} E ��oid C PC

17 {oid, pid, issue, assistant, total, address, location} S ��oid C ��oid E ��pid W PC

Enabling Collaborative Data Authorization Between Enterprise Clouds 153

1. E-commerce (order_id, product_id, total) as E
2. Customer_Service (order_id, issue, assistant) as C
3. Shipping (order_id, address, delivery_type) as S
4. Warehouse (product_id, location) as W

In the following, we use oid to denote order_id for short, pid stands for
product_id, and delivery stands for delivery_type. The possible join schema is also
given in Fig. 2. Relations E , C, S can join over their common attribute oid; relation
E can join with W over the attribute pid. The relations are in BCNF, and the only FD
(Functional Dependency) in each relation is the underlined key attribute determines
the non-key attributes.

C (oid, issue, assistant)

S (oid, address, d_type)

E (oid, pid, total)

W (pid, location)

oid

oid

oi
d

pi
d

Fig. 2 The given join
schema for the example

When a query is given, it should be answered by one of the parties that have the
authorization. Since our authorization model is based on attributes, any attribute
appearing in the Selection predicate in an SQL query is treated as a Projection
attribute. In other words, the authorization of a PSJ query is transformed into an
equivalent Projection-Join query authorization. Thus, a query q can be represented
by a pair [Aq,Jq], where Aq is the set of attributes appearing in the Selection and
Projection predicates, and the query join path Jq is the FROM clause of an SQL
query. For instance, there is an SQL query:

“Select oid, total,address From E Join S On E.oid = S.oid Where delivery =
‘ground’”

The query can be represented as the pair [Aq,Jq], where Aq is the set {oid, total,
address,delivery}; Jq is the join path E ��oid S. In fact, each join path defines a new
relation/view, and we say two join paths Ji and Jj are equivalent, noted as Ji

∼= Jj,
if any tuple in Ji appears in Jj and vice versa. As information release is explicitly
defined by the rules, an authorized query must have a matching rule to allow the
access.

Definition 2. A query q is authorized if there exists a rule rt such that Jt
∼= Jq and

Aq ⊆ At .

The rule and the authorized query must have the equivalent join paths. Otherwise,
the relation/view defined by the rule will have fewer or more tuples than the query
asks for. Here we don’t consider the situation where the projections on two different
join paths get the same result (e.g., by joining on foreign keys) since data coming

154 M. Le et al.

from different parties usually does not have foreign key constraints. For instance, the
example query Q1 is authorized by r11, but it cannot be authorized by r13. Although
all the required attributes are authorized by r13, their join paths are not equivalent.

2.2 Issues in Collaborative Data Access

The data authorization rules are supposed to satisfy the requirements laid down
by each enterprise, but without a careful analysis of interactions between them,
we may find that the rules are either mutually inconsistent or inadequate to allow
desired queries. For example, a hospital may choose to release data to an insurance
company without realizing what additional information the insurance company can
get from other parties such as a credit card company. If the data that the insurance
receives from hospital and credit card company is joinable, it can perform the join
and thereby effectively have access to data that is not authorized for it by any
explicitly stated rule. In other words, we now have an authorization rule that was
perhaps not intended to be granted. For example, the insurance company can now
deduce credit score of the patients at the hospital in question. We say such a rule
is inconsistent relative to the set of intended authorizations. Rule inconsistency
is obviously undesirable since it amounts to information leakage without explicit
knowledge of the parties involved.

Another problem is inadequacy of the given rules, which may cause a query to
be authorized but not implementable. The simplest way to illustrate this problem
is by considering the following situation: a rule specifies access to R �� S (where R
and S are relations owned by two different parties); however, no party has access to
both R and S individually and thus no party is able to do the join operation! In such
case, a query requesting the data on the join result of R and S is authorized by the
rule, but the query cannot be answered. We say that a rule can be enforced among
the cooperative parties if there exists a series of operations among the cooperative
parties that is allowed by the rule permissions and the final result is exactly the
information conveyed by the rule.

One way to enforce a rule is to introduce a trusted third party that is given enough
accesses in order to compute and supply the missing information. In the above
example, if there is a trusted third party trusted by owners of R and S, they can supply
it with relations R and S so that the third party can generate the missing R �� S. We
shall discuss different third party models to enforce the rules and answer queries.
A third party may either act as an opaque service provider that does not retain
any data, or provide richer functionality such as caching of data or query results.
Multiple third parties may be needed to provide data isolation, handle trust issues,
or to simply improve performance. In any case, it may be desirable to minimize
third party involvement due to risk of data exposure (in transit or due to hacking),
data transfer costs/delays, or the money charged by third parties.

Enabling Collaborative Data Authorization Between Enterprise Clouds 155

If a query is authorized and the corresponding rule(s) can be enforced, we still
need a safe query execution plan to answer the query. In spite of vast literature on
query planning, the problem here requires a new approach because of the access
restrictions and involvement of multiple parties.

2.3 Related Work

The problem of controlled data release among collaborating parties has been studied
in [14]. The basic model in this paper is identical to ours and provides the motivation
for our work. Its main contribution is an algorithm to check if a query with a given
query plan tree can be safely executed. However, it does not address the problem
of rule enforceability. Without a trusted third party, the unenforceable rules are
inaccurate configurations and need to be revised, and we address that in our work.
In another work [13], the same authors evaluate whether the information release
the query entails is allowed by all the authorization rules given to a particular user,
which considers the possible combinations of rules and assumes that the rules are
defined in an implicit way. In our work, we assume authorizations are explicitly
given, and data release is prohibited if there is no explicit authorization. While they
focus on the problem of query authorization, we emphasize the executability of the
authorized queries.

Processing distributed queries under protection requirements has been studied
in [6, 18]. In these works, data access is constrained by a limited access pattern
called binding pattern, and the goal is to identify the classes of queries that a
given set of access patterns can support. These works with access patterns only
considers two subjects, the owner of the data and a single user accessing it, whereas
the authorization model considered in this work involves independent parties who
may cooperate in the execution of a query. There are also classical works on
distributed query processing [5, 17]. Most of these techniques aim to improve
performance of query processing in the distributed environments, and minimize
the data transmission among the different sites. In our scenario, authorization rules
made by the data owners put constraints on data access privilege. When processing
the queries, we should not only optimize for performance but also make sure no
security constraint is violated.

Answering queries using views [16] is close to our work also since each rule
can be thought as a view over basic relations. Answering queries using views
can be used for query optimization [15], maintaining physical data independence
and data integration [8]. Different methods can be applied, materialized views can
be treated as new options and put into the conventional query plan enumeration
to find better query plan, queries can also be rewritten using given views with
query rewriting techniques, and sometimes conjunctive queries are used to evaluate
the query equivalence and information containment. However, these works do not
consider the collaboration relationships among different parties, which make our
problem different from them.

156 M. Le et al.

In the area of outsourced database services, some works [1, 7] discuss how to
secure the data in such environments, and there are also services like Sovereign
joins [2]. Such a service receives encrypted relations from the participating data
providers, and sends the encrypted results to the recipients. These methods are
useful to enforce our authorization rules. For instance, we can use Sovereign
joins [2] as a join service in our trusted third party model. The given authorization
rules is also similar to the firewall rules, which indicates what types of queries can
go through. As firewall rules are need to be enforceable and accurate [4, 12], we
have the same requirements in our situation.

This chapter is mostly based on our previous works [9–11, 20]. Authorization
rule consistency problem is address in [9], and [10] discusses the authorization
rule enforcement checking problem. The mechanism to generate safe query plans
is discussed in [20], and [11] deals with the problem of using trusted third parties in
a minimal way.

3 Enabling Cooperative Data Access

In this section, we discuss the mechanisms to solve various problems in cooperative
data access environment. These problems include achieving authorization rule con-
sistency, checking rule enforcement and generating safe query plans for authorized
queries.

3.1 Rule Consistency

Rules can be specified in two styles. An implicit specification means any valid
compositions of the given rules are also considered as valid rules. In contrast, an
explicit specification lists out all the allowed accesses and any access not included
in the list is not allowed. In general, if a party obtains two joinable relations, say R
and S according to two different explicit rules, it is free to join them to obtain R �� S.
With implicit specification, such a composition is, by definition, allowed and the
parties involved must accept the risks of additional information leakage. However,
with explicit specification, the composition is clearly not intended and we need to
resolve the inconsistency. This can be done in two basic ways: (a) addition of the
derived authorization such as R �� S to the rules, or (b) additional restrictions to
disallow access to the composition.

In this work, we focus only on (a) and rely on the enterprises to expand their
rules suitably so that access to compositions is explicitly included in the rules. This
is a reasonable approach since it is not possible to prevent private computation by a
party without restricting the component information itself. Approach (a) effectively
implies that we generate a closure of the given set of rules. Formally, if rules ri, r j of
party P can be joined losslessly according to the given join schema, and the resulting

Enabling Collaborative Data Authorization Between Enterprise Clouds 157

information [Ai
⋃

A j,Ji �� Jj] is also authorized by another rule rk of party P, then
we say the two rules are “upwards closed”. For a set of rules, if any two rules that
can be joined losslessly are “upwards closed”, we say the set of rules is consistent,
and the rules form a consistent closure. In the following, we shall consider how to
systematically and efficiently generate the consistent closure of given set of rules.

Although approach (a) is straightforward, there are many instances where
approach (b) is highly desirable. This happens when the association of two pieces of
information is more sensitive than the individual pieces of information. For example,
a hospital may not want the insurance company to be able to correlate medical
diagnosis of its patients with their insurance claim histories, even though it does
want to convey diagnosis information to the insurance company. The only way to
restrict composition ability is to deny unrestricted access to one of the two basic
relations involved in the composition. For example, if it is problematic to allow
party Pt to have access to R �� S, we must ensure that Pt can access either R or S
but not both. In particular, Pt may be given unrestricted access to R, but for any
queries involving S, it needs to go through a third party that controls the amount
of data transferred. Thus, Pt cannot reliably construct the full R �� S. (As usual, it is
necessary to assume that Pt cannot accumulate up to date version of the entire S over
time via a series of small queries. Without such an assumption, giving any access to
tuples of a relation would amount to allowing access to the entire relation.)

Returning to approach (a), it is expected that the original authorization rules
specified by the participating enterprises will usually be inconsistent and we need
to identify the missing compositions that would remove the inconsistency. In the
following we consider the consistency problem from the perspective of an individual
party, but the same procedure needs to be repeated for every party.

We start by introducing the notion of key attribute hierarchy, which is useful
for iterative construction of the closure. Consider two relations R and S with key
attributes R.K and S.K respectively. If these relations can join losslessly, then the
joining attribute must be the key attribute in at least one of them [3]. That is, either
the join is performed on R.K, S.K, or R.K is the same attribute as S.K. In either case,
one key attribute from a basic relation is also the key attribute of the join result of the
two relations. If the join is performed over the attribute S.K (R.K �= S.K), then the
attribute R.K can functionally determine the relation S. In such case, we say R.K is
at a higher level than S.K, denoted R.K→ S.K. If R.K = S.K, there is no hierarchy,
and such key attribute of R and S is also the key attribute of the join result. For a
given valid join path, the key attribute of the join path is always a key attribute from
a basic relation. We call the key attribute of the join path in an authorization rule as
key of the rule. Also, the join attributes in the join paths are always key attributes
of some basic relations and these join attributes form the hierarchal relationship.
For instance, in the given example rules, the key attribute oid is at the top level and
oid→ pid→ sid.

Now for each key attribute of the basic relation, we create a group for the rules,
called join group that takes this attribute as its key attribute. Since the rules within
this group share the same key attribute, any two of them can join over their key
attributes. More formally, a join group is a group of authorization rules associated

158 M. Le et al.

with a key (join) attribute, where all the attributes in these rules functionally depend
on this attribute. If a join group is consistent, then it is called a consistent join
group.

Since some rules can be the result of private computation over other rules with
respect to join paths, the rules themselves have relationships. Given a rule rt with
join path Jt , we call a join path as a sub-join path of Jt if it is a join path that
contains a proper subset of relations of JRt . We say a rule defined on a sub-join
path of Jt is a relevant rule to rt . A rule rt can be generated only by combining the
information from its relevant rules, since any other combination will contain extra
information from relations not in Jt . Thus we can organize the rules into a relevance
graph where each node is a rule marked by its join path and the nodes are connected
by the relevance relationship. For instance, Fig. 3 shows a relevance graph. Here J5

is a sub-path of J6, and r5 is a relevant rule to r6, the rules are connected in the graph.

oid, issue, pid, location total,
assistant, address, delivery

S C E W

oid, pid, location
total, address, delivery

S E W

oid,pid,total
address,
delivery

E S
oid, pid, issue,

assistant

C E

oid,issue,
assistant

E
oid, pid,

total

E

oid, pid, total

E

oid, pid

S
oid, address,

delivery

E

oid, pid

C

PE PS
PCPw

oid, pid, location
total, address

S E W

W

pid, location

oid, pid, issue, assistant,
total, address, location

C S E W

oid,
pid,total
location

E W
oid, pid
location

E W
oid, pid,

total,issue

E C

oid,pid,issue,
total, address

S E C

LL L

L

L

r1 r2

r3

r4

r5

r6 r7

r8

r9 r10

r11
r12

r13

r14

r16

r15

r17

Fig. 3 Graph structure built for the example

It is now possible to outline the closure algorithm, although for brevity we refer
the reader to [9] for details. The algorithm first divides rules into join groups and
generates consistent join groups. Next, based on the join attribute hierarchy, each
join attribute is considered for deriving further rules, and any such rules are added
to the rule closure. When this procedure terminates, we have the entire consistent
closure.

3.2 Rule Enforcement

In Sect. 2.1, we introduced the concept of query authorization. However, “autho-
rized” is only a necessary condition for a query to be answered but not sufficient.
To perform the required join operations to answer the query, we need to find

Enabling Collaborative Data Authorization Between Enterprise Clouds 159

appropriate parties that have the sufficient privileges to do these joins. Therefore,
at least one legitimate query execution plan is required to answer a given query.
A query execution plan or “query plan” for short, includes several ordered
steps of operations over authorized and obtainable information and provides the
composed results to a party. A query plan generates relational results, which can
also be represented with the triple [Apl,Jpl ,Ppl]. All the operations executed and
the final results produced by a valid query plan should be authorized by some
given authorization rules. A query plan pl answers a query q, if the final generated
relational result of the plan satisfies Jpl

∼= Jq
∼= Jt , Aq = Apl ⊆ At and Ppl = Pt . An

authorization rule defines the maximal set of attributes that a query on the specified
join path can retrieve. Thus, each rule can also be treated as a query. We call the
query plan to enforce a rule as an enforcement plan or “plan” for short in the
following.

Definition 3. A rule rt can be totally enforced, if there exists a plan pl such that Jt
∼=

Jpl, At = Apl, Pt = Ppl. rt is partially enforceable, if it is not totally enforceable and
there is a plan pl that Jt

∼= Jpl , At ⊃ Apl, Pt = Ppl. Otherwise, rt is not enforceable.
A join path Jt is enforceable if there is a plan pl that Jt

∼= Jpl.

If a rule can be correctly enforced, there should be at least one valid enforcement
plan for it. To enforce a rule with a long join path, we need to access the
information from its underlying relations. Hence, whether a long join path can be
enforced depends on the enforceability of the shorter join paths relevant to it. An
rule enforcement plan with a long join path also uses the results of enforcement
plans with shorter join paths. To that end, the enforcement plan building process
requires a systematic walk through the rules with increasing join path length. At the
beginning, the rules involving the basic relations (i.e., access rights of an enterprise
to its own data) are trivially known to be totally enforceable. In the next step, we
consider enforcement of rules with join path length of 2, and so on. In considering
enforcement of a rule involving join of data from two distinct parties, we may need
transmission of attributes from an owner party to another one that has access to it but
does not own it. We call a plan as joinable plan if it contains all the key attributes
of the basic relations in its join path. In some cases, a rule does not have a total
enforcement plan. However, there are plans whose results implement subsets of the
rule attribute set. We say that an attribute set is a maximal enforceable attribute
set for a rule, if it is the result of a valid plan, and there is no other plan of the same
rule that can implement a superset of these attributes. If a rule is totally enforceable,
its maximal enforceable attribute set is the rule attribute set. Each rule has only one
maximal enforceable attribute set.

It is obvious that not all the rules are enforceable. Whether an enforcement
plan exists depends on whether pieces of enforceable information on shorter join
paths are available and whether they can be joined losslessly at some place. In a
cooperative environment, the enforceable information on remote cooperative parties
may also be helpful to construct an enforcement plan. We do need a mechanism
to check rule enforcement so as to tell which rules can be enforced and what are
their maximal enforceable attribute sets. We address the rule enforcement checking

160 M. Le et al.

problem in two steps. First, we examine the enforceability of each authorization
rule in a constructive bottom-up manner, and build a relevance graph that captures
the relationships and the enforceability among the rules. Second, we deal with the
unenforceable information in the examined rules.

Unenforceable rules can be handled in two ways. The first choice is that we keep
only the found enforceable rules with their maximal enforceable attribute sets, and
rules that are not enforceable as well as the unenforceable attributes are removed
from the rule definitions. In other words, the algorithm finds all the information that
can be safely retrieved according to the given set of rules, and all inaccurate and
unenforceable definitions are removed. This solution can be thought as a conserva-
tive one since it prohibits some authorized information to be released because of the
enforceability. The second choice is to modify the rules as needed. For this, we take
the view that all the information regulated by the rules is authorized, and authorized
information should be retrievable. Whenever any information in the defined rules
cannot be enforced, we change the rule configurations by granting more privileges
so as to make this information enforceable. Since there are different ways to modify
the rules, we prefer to find the way that has minimum impact on the existing rules.
That is, we try to find the minimum amount of additional information to release. We
have developed algorithms of both flavors and the details can be found in [10].

3.3 Query Planning

Once the enforceability of a query – or rather a rule satisfying the query – is
known, we need a mechanism to generate the detailed query plan. A query plan
is generated top-down by considering operations over sub-plans until the sub-plans
refer to basic relations. The possible operations on plans are projection, join and
data transmission. For instance, there is an enforcement plan for r3 in Table 1, and
such a plan contains a join over two sub-plans on the data authorized by r1 and r2

respectively. PW owns the information authorized by r1, and the sub-plan for it is an
access plan reading the table W . The sub plan for r2 includes an access plan reading
table S at PS, and another operation transmitting the data from PS to Pw. The example
plan authorized by r3 has the Jpl = E ��pid W , and Apl = {oid, pid, location}. We
say a rule rt authorizes (�) a plan pl, if Jpl

∼= Jt , Ppl = Pt , and Apl ⊆ At .

Definition 4. An operation in a query plan is consistent with the given rules R, if
for the operation, there exist rules that authorize access to the input tuples of the
operation and to the resulting output tuples.

For the three types of operations in our scenario, we give the corresponding
conditions for consistent operation.

1. For a projection (π) to be consistent with the rules, there must be a rule rp

authorizes (�) the input information.

Enabling Collaborative Data Authorization Between Enterprise Clouds 161

2. Join (��) involves two input subplans pli1 and pli2 to generate the resulting plan
plo = pli1 �� pli2. For a join operation to be consistent with R, all the three plans
need to be authorized by rules. Since join is performed at a single party, and rules
are upwards closed, if the input plans are authorized by rules, the join operation
is consistent.

3. Data transmission (→) is an operation that involves two parties. The input is a
plan pli on a party Pi, and the output is a plan plo for a party Po, where plo = pli→
Po. As each join path defines a different relation, the receiving party must have
a rule that is defined on the equivalent join path as the information being sent.
Otherwise, the transmission is not safe. Therefore, a data transmission operation
to be consistent with R, if ∃ri,ro ∈ R,Ji

∼= Jo,Pi �= Po and ri � pli,ro � plo. If Pi is
sending information with attributes not in Ao, Pi should do a projection operation
πAo(pli) first.

In the example, r8 authorizes PE to get information on (S �� E ��C ��W). If PS

sends the information of r11 to PE , it will not be allowed. Although the attribute
set of r11 is contained by r8, there is no rule for PE to get data on the join path of
(E �� S), and the data transmission is disallowed.

Definition 5. A query execution plan pl is consistent with the given rules R, if for
each step of operation in the plan is consistent with the given rule set R.

Let us now consider the basic query planning problem: given a set of authoriza-
tion rules R and an incoming query q against enforceable information, generate a
consistent query plan pl that is optimal and satisfies all the rules.

Due to the difficulties in enumerating all possible ways of answering a query,
we consider a greedy algorithm based on the relevance graph [20]. To generate a
consistent query plan, we need to make sure all the join operations in a join path
can be safely implemented. In other words, we need to find a way of enforcing
the query join path and retrieve all the attributes for the query. To find an efficient
consistent query plan, we always choose the optimal join path enforcement plan
first, and then apply the greedy mechanism to obtain required relevant rules. The
problem of covering all the required attributes is similar to the classical weighted set
covering problem, and hence the greedy algorithm also follows a similar approach.

The optimal enforcement plan for a join path on a specified party can be pre-
computed by extending the rule enforcement checking algorithm using a dynamic
programming approach. Such a plan only enforces the join operations in query
and usually results in missing attributes. To retrieve missing attributes, we traverse
the graph structure again to decompose the target rule into a set of relevant rules
that can provide these attributes. We record the required operations among these
rules, and then recursively find ways to enforce these relevant rules to generate a
query plan. With the greedy heuristic, we always try to decompose a rule into a
minimal number of relevant rules. As we recursively look for the plans to enforce
the relevant rules, we try to use the intermediate results as much as possible to
improve the performance. The details of the algorithm and proofs of correctness
can be found in [20].

162 M. Le et al.

The time complexity of the proposed greedy algorithm is O(N3), where N is the
total number of rules. In addition, we evaluated the generated query plans of the
algorithm. Since the optimal plan cannot be found in general, we cannot compare
the resulting query plans with the optimal ones. Thus, we use simple case studies,
where manually finding the optimal plans becomes possible, and we compare the
results on these cases. The results show that the greedy query planning algorithm is
effective in finding a good query plan for an authorized query. In most of the cases,
it generated the optimal plans, and it gave close to optimal plans in the remaining
cases.

4 Other Authorization Issues

We discuss several other issues in this section. The first problem is using a trusted
third party in a minimal way to enforce rules that are not enforceable among existing
collaborating parties. The second problem is maintaining the rule consistency
property in the case of rule changes.

4.1 Rule Enforcement with Trusted Third Parties

As discussed earlier, the enforcement checking may reveal that no party is capable
of performing certain operations. One way to handle such a case is by introducing
trusted third parties that provided required data accesses in order to enforce
unenforceable rules. However, third parties may be expensive to use and the data
given to them could be at greater risk of exposure than the data maintained by
original parties. Therefore, we focus on the problem of using third parties minimally
in order to deliver the information regulated by the given authorization rules. We
model the cost of using third party by communication and computing costs. It is not
surprising that finding the minimal cost with third party to implement a given rule
is NP-hard, and thus a greedy algorithm becomes essential.

We assume that a trusted third party (T P) is not among the existing cooperative
parties and can receive information from any cooperative party. We assume that the
T P always performs required operations honestly, and does not leak information
to any other party. The simplest third party model is one of memoryless service
provider. That is, each time we want to enforce a rule, we need to send all relevant
information to the third party. The third party does its job, returns the results and then
completely cleans up its storage space (i.e., no retention of data between successive
requests). With the existence of a third party, we can always enforce a rule by
sending relevant information from cooperative parties to T P.

Since each rule defines a relational table, we can quantify the amount of
information represented by a rule. This can be exploited in minimizing the amount

Enabling Collaborative Data Authorization Between Enterprise Clouds 163

of information used by third parties. All the selected rules must be relevant to the
target rule rt that is to be enforced. If a relevant rule of rt is not relevant to any other
relevant rules of rt with longer join paths on the same party, we call it a Candidate
Rule. We only choose from candidate rules to decide the data that needs to be sent
to the T P. Sending minimal information to the third party can minimize not only
communication cost but also computation costs. However, estimating computation
costs precisely can be challenging.

Suppose that we have a set of cooperative parties {P1,P2 . . .Pm} together with a
set of rules R = {r1,r2 . . .rn} and a target rule rt to be enforced at the third party
T P. The amount of the information is quantified by sum of the number of attributes
picked from each rule multiplied by the number of tuples in that selected rule. Thus,
we want to minimize the communication cost Cost = ∑k

i=0 π(ri) ∗ card(ri), where
ri is a selected rule, k is the number of selected rules, and π(ri) is the number
of attributes selected to be sent, and card(ri) is the number of tuples in ri. More
specifically, the communication cost can be defined as follows:

cost(C)=
k

∑
i=1

w(Si)π(Si),π(Si)=

⎧
⎨

⎩
|S j

⋂
(U \⋃i−1

j=1 S j)|, if(key(Si) /∈ ⋃i−1
j=1 S j)

|S j
⋂
(U \⋃i−1

j=1 S j)|+ 1, if(key(Si) ∈ ⋃i−1
j=1 S j)

(1)

In Eq. (1), the function key(Si) gives the key attribute of candidate rule ri. In
general, this can depend on the number of attributes selected by the rule ri. To
illustrate, suppose that we have a rule {oid, total, pid, location},(E,W)→ Party E .
Even though oid is the key of the entire rule, if we only need location in this rule,
pid can be the key of the selected rule. In such a case, if oid is covered by previous
selected rules but pid is not, then using pid as the key can reduce the overall cost.
However, due to the complexity of these situations, we assume function key(Si)
always gives the key of ri, which is oid. We can think w(Si) is the per attribute cost
for the rule ri which is mostly determined by card(ri). In fact, the number of tuples
in a relation/join path depends on the length of the join paths and the join selectivity
among the different relations. Join selectivity [17] is the ratio of tuples that agree on
the join attributes between different relations, and it can be well estimated using the
historical and statistical data of these relations in many cases.

The “computing cost” is defined as the cost of CPU usage and disk I/O. These
costs are incurred as the third party fetches data from storage devices, performs join
operations, and writes out the join results. (The I/O cost of receiving the incoming
data from cooperative parties and relaying results to them is counted as part of
communication cost and not included in the computation cost.) The computing cost
is difficult to estimate because of the different access methods for relations (e.g.,
index scan or sequential scan), and different join methods (e.g., nested loop, sort-
merge, hash-join, etc.) Moreover, the order of joins and the size of the input data
and join results also influence the computing cost. We assume the sizes (in terms of
number of tuples) of the basic relations and results of joins are known. We denote
the cost of a resulting relation on join path Ji as w(Ji), which can be estimated as
discussed above. We also assume all the joins are done with nested loop method,

164 M. Le et al.

and given n rules, the third party always does n− 1 sequential join operations. We
assume the relations have indices on the join attributes. For a nested loop join with
two input relations, the cost can be estimated as: Access(Outer)+ (Card(Outer) ∗
Access(Inner)), where Access(R) is the cost of access the relation R, and Card(R)
is the number of tuples in R. Obviously, we always prefer using the smaller input
relation as the outer relation. In addition, as we need to perform n− 1 joins, we
keep the intermediate join results of the previous joins. The result of a join can
be estimated as Access(Result) = Access(Out ∗ Inner ∗ SelectivityFactor), where
SelectivityFactor is the estimate of what fraction of input tuples will be in the result.
Therefore, the total cost of n− 1 join operations is:

CompCost = Access(R1)+
n−1

∑
i=1

(Card(JRi)∗Card(Ri+1)∗Attr(Ri+1)∗ SFJRi,Ri+1)

In the above equation, R1 is the selected rule with least cost w(Ji), and
Access(R) = Card(R) ∗ Attr(R), whereAttr(R) is the number of attributes of R.
JRi is the join results of the rules from R1 to Ri, and SFJRi,Ri+1 is the selectivity
factor for each join operations. To minimize CompCost, it is preferred to have
fewer operations, and for each operation, one with smaller cardinality should be
used as the Outer relation. Given a set of selected relevant rules generated by the
previous algorithms, we calculate the computing cost using the above model. Our
experiments indicate that the communication cost and computing cost are generally
closely related in practice (even though counterexamples are easy to construct). For
the detailed algorithms and the comparisons with brute force algorithms, please
refer to [11].

4.2 Handling Rule Changes

Until now, we have assumed the rules to be static. In practice, the rules may change
with varying frequencies. One potential reason is simply a change in business
policies, which is expected to occur only occasionally. The other case is where the
interaction might involve multiple phases or stages with different (or somewhat dif-
ferent) rules in each phase. Other intermediate situations are also possible – such as
when access rights are couple with some kind of reputation system. In the following
we briefly consider the issues that may arise due to changes in access rules.

In general, a change of authorization rule that meets the new requirement and also
has minimal impact on the remaining authorization rules is the optimal solution. In
the algorithm considered here, we simply minimize the number of rules that need
to be modified; however, in general, several other considerations may apply. For
instance, some authorization rules may be more important than the others, and this
aspect may need to be considered in minimizing the change. Similarly, some parties
may collaborate more intimately or be more trustworthy than the others, and the
changes should consider this gradation as well.

Enabling Collaborative Data Authorization Between Enterprise Clouds 165

As rules are being changed, usually we need to modify a set of rules to maintain
the rule consistency property. There are basically two types of rule changes. The first
type of rule change is granting or revoking non-key attributes (non-join attributes)
to an existing rule. In such scenarios, we can take advantage of the relevance graph
to maintain the rule consistency. In case of rule grant, we search upwards in the
relevance graph starting from the rule being modified, and this can be done with
a depth first search. If the rule being inspected does not have the newly granted
attributes, then the algorithm adds these attributes to the rule. If the rule being
inspected already has these attributes, the search along this path will stop and
another path will be picked. Consequently, the added attributes will be propagated
to all the related rules that are at a higher level from the rule being changed. In the
case of revocation, we search the relevance graph downwards, and the process is
similar.

There is another type of rule change, where a rule with a new join path is granted
to a party or an existing rule is completely revoked. We first discuss the new rule
grant. In such a case, we need to check if this rule can join with existing rules to
generate legitimate new rules. The mechanism is similar to the previous approach
for generating the consistent closure. As the newly added rule has a new join path,
we first obtain the key attribute of it, and then the rule is put into its corresponding
join group. Within this group, as a new rule is added, the algorithm recomputes the
consistent join group. This can be done efficiently since these rules all can join over
their key attributes. The new rule is inserted into the graph of the join group. The
algorithm will not check all its relevant rules in the graph since their composition
will not create new join paths. All the other rules are checked and the new rule
can join with each of them to form another new rule and be put into the consistent
join group. In the next step, each of the added rules is iterated to see what are the
other rules that can be generated based on it. By iterating the key attributes and the
consistent join groups associated with them, the algorithm adds all the generated
rules into the rule set so as to complete it as a consistent closure.

If an existing rule is completely revoked, we need to make sure that such a join
path can no longer be generated from the remaining relevant rules. Therefore, each
possible ways to enforce the join path need to be obtained and the possible pairs
should be taken out. To achieve that, we use an algorithm taking advantage of the
relevance graph as well. In the graph, only the direct relevant rules of the revoked
rule denoted as rv are examined. The direct relevant rules of rv are the relevant ones
in the graph that directly connect with rv with one edge. For each of the directly
connected rule rd , the algorithm computes its matching rule rm if it exists. Given
the join schema and relevance graph, rm can be efficiently determined, and (rd ,rm)
forms a pair which means a join over them can enforce the join path of rule rv.

For each found pair of rules, the algorithm needs to remove one rule from it so
as to make the join path no longer enforceable. If a rule in the pair is not locally
enforceable, we prefer to remove it since it does not cause cascade revocations. In
contrast, if a rule in the pair is locally enforceable, by removing this rule, we need
to make sure all the rules that can compose this one are taken out. Thus, a cascade
of revocations will occur. As this is a recursive process, we want to revoke minimal

166 M. Le et al.

number of rules so that the impact is minimal. Hence, when iterating each pair of
rules, the algorithm also records the number of appearances of the rules. The rule
with most appearances is preferred to be removed since removing one such rule can
break several pairs. In the worst case, half of the existing rules need to be removed
from the rule set. The detailed algorithms for this are available in [9].

5 Conclusions and Future Work

In this chapter, we considered scenarios that require different parties and enterprises
to cooperate with one another to perform computations to satisfy business require-
ments. Each of these enterprises owns and manages its data independently using
a private cloud, and these parties need to selectively share some information with
one another. We considered an authorization model where authorization rules are
used to constrain the access privileges based on the results of join operations over
relational data.

In such an environment, we identified the problems of rule consistency and rule
enforcement. For a query requesting enforceable information, consistent query plans
are required so as to answer the query. We introduced the notion of consistent query
plan and a mechanism to generate such plans. For the authorization rules that cannot
be enforced among the cooperative parties, we proposed to use a trusted third party
to perform the required join operations. We defined cost models to minimize the
interactions between cooperative parties and third parties. Finally, we discussed how
to maintain the rule consistency when some rules are modified.

We assumed that the collaborating parties first make the rules via negotiations,
and then check whether a query is authorized and the safe ways to answer the query.
It is possible to consider reversing the process. That is, we may want to figure out
the complete set of queries that should be answered to meet business requirements,
and after that we design authorization rules for cooperative parties so that only these
wanted queries can be answered. However, due to the local computation, we may
authorize extra information when granting privileges for this set of queries. Thereby,
the problem becomes to find the best way of making rules so that minimal amount
of extra information will be released together with the rules. To achieve that, we
may also need a limited number of third parties are given, and there is a problem of
finding the optimal solution under such a scenario.

We studied the rule consistency problem with infrequent rule changes. In a
military or workflow scenario, the permissions as well as the data may change on
a per mission basis so that an authorization rule given to a party applies only for a
short period of time. Since the relevant data also changes frequently in this case, it
will become useless after some time. In such environments, the authorization rule
can be granted dynamically based on the demands. For instance, for each step in
a query, we can grant permissions to authorize the operation on the fly. Once such
a step is executed, the authorizations are revoked. This is similar to the workflow
scenario. By granting privileges for a short time period, the extra information

Enabling Collaborative Data Authorization Between Enterprise Clouds 167

that is obtainable via local computation can be limited. The challenging problem
becomes finding a way to schedule the queries as well as the time points to grant the
authorizations so that minimal amount of extra information is released.

In our current model, access privileges are specified at the attribute level. Once
a party can access an attribute, it can get all the tuples projected on that attribute.
Since certain tuples can be more sensitive than others, restrictions on the tuple level
are also necessary to prevent undesired data release. Thus if would interesting to
consider simplified forms of selection operations that can be handled by the same
framework. In addition, it is also interesting to consider the write permissions. Our
current models assume that only the data owners may change their data and other
parties just read the data from these owners. In some situations, it is desirable that
a collaborating party can also modify the data owned by others. In addition to the
synchronization problems, there is also the challenging problem of organizing the
privileges and correctly granting and revoking write privileges to certain parties.

Our current model does not assume any malicious insiders and all the parties are
expected to strictly follow the given authorization rules. In practice, a party may
not behave honestly during the collaboration. For instance, a party may obtain some
authorized information from a data owner, and then leak it to some unauthorized
parties. As another example, a party that receives data from the data owner and
sends it to another party according to the generated query plan may change some
of the data. Thus, it is required to have a mechanism that can verify the integrity
of the received data. One possibility is to use the existing mechanisms such as hash
values, Merkle trees, and signatures to ensure the data integrity [22,23]. Considering
the properties in the collaboration environment, it may be possible to check the
data integrity through collaboration. In cooperative data access, there may exist
more than one legitimate data transmission path beginning from the data owner
to the authorized party. Therefore, parties can exchange the information they have.
By doing that, if the number of misbehaving parties is limited, it is possible to
detect them. It is also possible to define rules in such a way that each query be
answered in at least k ways (for some k), and misbehaviors can be detected if only
fewer than k/2 ways behave irregularly. Furthermore, existing mechanisms such as
reputation systems [19] and trust management [21] can be considered to ensure the
data integrity in the cooperative data access environments.

Our third party model has been rather simplistic. It is possible to consider more
sophisticated models where the third party can store data and even the intermediate
results for more efficient enforcement. Because of the limited availability of storage,
and the varying potential of reuse of stored data, one needs to design caching
policies carefully. The optimal cache policy of the third party can be different from
the file cache and process cache because the relational data is structured and we
can cache the data on a per tuple or column basis. Since the business data of the
cooperative parties may be changing dynamically, caching also introduces the tricky
problem of maintaining synchronization between original data and its copies.

To build a private cloud, different parties may rent the cloud infrastructure from
the same service provider. It is also possible for an enterprise to build a hybrid
cloud where the data owner manages the sensitive data locally, but the data for

168 M. Le et al.

sharing is put in a public cloud. These emerging trends create new challenges and
opportunities for secure cooperative data access. If cooperative parties use the same
cloud provider, then the cloud provider could be used as a partially trusted third
party to help enforce the security policies. In addition, it may be possible to perform
privacy preserving join operations in such an environment. The expected mechanism
can be a hybrid of using a trusted third party and the secure multiparty computation.
Also, the cost model should also be revised under such situations.

References

1. G. Aggarwal, M. Bawa, P. Ganesan, and etc. Two can keep A secret: A distributed architecture
for secure database services. In CIDR 2005, pages 186–199.

2. R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In , ICDE 2006, 3–8
April 2006, Atlanta, GA, USA, page 26, 2006.

3. A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. ACM
Transactions on Database Systems, 4(3):297–314, 1979.

4. E. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live testing of firewall config-
uration enforcement. IEEE Journal on Selected Areas in Communications, 27(3):302–314,
2009.

5. P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query processing
in a system for distributed databases (SDD-1). ACM Transactions on Database Systems,
6(4):602–625, Dec. 1981.

6. A. Cali and D. Martinenghi. Querying data under access limitations. In ICDE 2008, April 7–12,
2008, Cancun, Mexico, pages 50–59, 2008.

7. S. De Capitani di Vimercati, S.Foresti, S.Jajodia, S.Paraboschi, and P.Samarati. Keep a few:
Outsourcing data while maintaining confidentiality. In ESORICS 2009, pages 440–455.

8. R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries using
views. VLDB Journal, 10(2–3):182–198, 2001.

9. M. Le, K. Kant, and S. Jajodia. Access rule consistency in cooperative data access environment.
In 8th IEEE International Conference on Collaborative Computing: Networking, Applications
and Worksharing, 2012.

10. M. Le, K. Kant, and S. Jajodia. Rule configuration checking in secure cooperative data access.
In 5th Symposium on Configuration Analytics and Automation (SafeConfig), 2012.

11. M. Le, K. Kant, and S. Jajodia. Rule enforcement with third parties in secure cooperative data
access. In 27th IFIP WG 11.3 Working Conference on Data and Applications Security and
Privacy (DBSec), 2013.

12. A. Wool. A quantitative study of firewall configuration errors. IEEE Computer, 37(6):62–67,
2004.

13. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Assessing
query privileges via safe and efficient permission composition. In CCS 2008, Virginia, USA,
October 27–31, 2008.

14. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Controlled
information sharing in collaborative distributed query processing. In ICDCS 2008, Beijing,
China, June 2008.

15. J. Goldstein and P. Larson. Optimizing queries using materialized views: A practical, scalable
solution. In SIGMOD 2001, pages 331–342.

16. A. Y. Halevy. Answering queries using views: A survey. VLDB Journal,10(4):270–294,2001.
17. D. Kossmann. The state of the art in distributed query processing. ACM Comput. Survey,

32(4):422–469, 2000.

Enabling Collaborative Data Authorization Between Enterprise Clouds 169

18. C. Li. Computing complete answers to queries in the presence of limited access patterns.
VLDB Journal, 12(3):211–227, 2003.

19. K. Hoffman, D. Zage, and C. Nita-Rotaru, A survey of attack and defense techniques for
reputation systems, ACM Computing Surveys (CSUR), vol. 42, no. 1, p. 1, 2009.

20. M. Le, K. Kant, and S. Jajodia. Consistent query plan generation in secure cooperative data
access. Under submission. http://mason.gmu.edu/~mlep/submission.pdf

21. R. K. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang, and B. S.
Lee, Trustcloud: A framework for accountability and trust in cloud computing, in Services
(SERVICES), 2011 IEEE World Congress on, 2011, pp. 584–588.

22. J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume, Merkle signa- tures
with virtually unlimited signature capacity, in Applied Cryptography and Net- work Security,
2007, pp. 31–45.

23. C. Wang, Q. Wang, K. Ren, and W. Lou, Privacy-preserving public auditing for data storage
security in cloud computing, in INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

http://mason.gmu.edu/~mlep/submission.pdf

Making Query Execution Over Encrypted
Data Practical

Ken Smith, M. David Allen, Hongying Lan, and Andrew Sillers

Abstract The benefits of data outsourcing continue to grow, however owners of
sensitive data cannot take full advantage due to its risk profile. Encrypted query
processing promises to change this situation and allow data owners to securely
outsource their sensitive data: data is encrypted, installed in a database on a
remote (e.g., cloud) server, and standard queries are processed against the remote
encrypted data. Correct query answers are returned without ever exposing plaintexts
or decryption keys at the server. This chapter addresses three key challenges to
realizing, as a practical option, the promise of encrypted query processing: handling
query operations which cannot execute in ciphertext, implementing a working
system, and achieving acceptable query performance.

1 Background: Clouds and Outsourcing

The trend to outsource data to third party clouds continues to grow, however for
owners of sensitive data, clouds hold both great promise and vexing problems.

1.1 Outsourcing Data Management: The Promise

Renting a computing infrastructure frequently makes much better sense than owning
and running one. Outsourcing the management of computing assets allows an
organization to focus personnel, training, and hiring on their core business. It also
offers unprecedented agility, such as near instant expansion and contraction of the
organization’s IT footprint as software development cycles and seasonal business

K. Smith (�) • M.D. Allen • H. Lan • A. Sillers
The MITRE Corporation, McLean, VA, USA
e-mail: kps@mitre.org; dmallen@mitre.org; hlan@mitre.org; asillers@mitre.org

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__8,
© Springer Science+Business Media New York 2014

171

mailto:kps@mitre.org
mailto:dmallen@mitre.org
mailto:hlan@mitre.org
mailto:asillers@mitre.org

172 K. Smith et al.

demands require, and takes advantage of the cost efficiencies of a volume provider
of computing services, which have been compared to the efficiencies of household
gas, water, and electric utilities. Especially in the era of big data, the cost of
servers, disks, space, power, and cooling can far exceed the budget. Once purchased,
computing assets must be actively patched, repaired, and upgraded; such costs can
be avoided by renting.

In addition, outsourcing providers now offer a continually growing array of
services that its customers could not afford to develop themselves. For example,
Amazon Web Services offers rentable services such as inexpensive data archival,
on-demand map reduce clusters, and subnets with private IP addresses [18].

This combination of rentable computing infrastructure and novel computing
services makes widely available modes of computation which were previously
impossible, or out of reach due to cost. Consider a medical experiment which
generates and analyzes huge genetic datasets. The research funding to rent storage
and computing on an as needed basis is far less than that required to purchase these
and to pay professional staff to manage them. Using an outsourced infrastructure,
novel studies can be proposed which might not otherwise be feasible under research
funding.

1.2 Outsourcing Data Management: The Problem

Owners of sensitive datasets however, can be caught between the promise of
outsourcing and the problem of losing control of part of the computing stack (Fig. 1).
For an infrastructure as a service (IaaS) cloud, these stack layers include: hardware,
virtualization, fabric, and customer-installed software applications (e.g., DBMS,
web server, GUI); customers only control the final layer. Even with full confidence
in cloud-supplied layers (e.g., the customer does not expect hypervisors to ever
be compromised), cloud security engineering requires careful teamwork between

Fig. 1 Cloud security: the
challenge of letting go

Making Query Execution Over Encrypted Data Practical 173

the outsourcing vendor and the customer. The security features of vendor-supplied
layers and customer-supplied layers must mesh without a flaw when they are used
to implement a solution together. In this case, the utility analogy breaks down,
because consumers rarely interact with their household and gas utilities beyond
simply paying bills and turning service on and off.

Owners of sensitive datasets must also worry about the other participants in
a cloud ecosystem. Unlike a self-managed infrastructure, the cloud ecosystem
includes cloud neighbors, who typically belong to unknown organizations. In
several published attacks, the attacker becomes a cloud neighbor of their target to
stage the attack. For example, [22] illustrates a side-channel attack on a physically
collocated virtual machine (i.e., one sharing the same physical host as the attacker’s
virtual machine), enabling the attacker to steal a cryptographic key in the target
virtual machine by examining shared hardware resources.

The cloud ecosystem also includes vendor-supplied cloud administrators, who
are typically assumed to be “honest but curious” [11]. However, this is not always
the case. Recently, German citizens hiding their money in Swiss bank accounts to
evade high national taxation rates were identified because the German government
bribed the bank’s database administrator [17]. Owners of sensitive government data
cringe at the thought that a foreign government could influence a cloud administrator
to do something like this.

In addition, in the advanced persistent threat (APT) attacker model [21], cited for
the exfiltration of significant amounts of intellectual property, any person’s online
identity can be compromised (e.g., via a phishing attack) allowing the APT attacker
to masquerade with the full privileges of the compromised identity. Therefore, any
member of a cloud ecosystem could potentially become an attacker.

Due to such problems, owners of sensitive data are currently conflicted with
respect obtaining the agility, services, division of labor, and efficiencies clouds can
offer.

2 Using Data Encryption

A potentially game-changing strategy is the use of encryption to protect sensitive
data in clouds. Encrypted data is mathematically transformed so only the possessor
of a decryption key can reconstitute the original plaintext data without A pro-
hibitively expensive computational effort. Thus, if sensitive cloud data is encrypted,
an exfiltration attack does not truly succeed unless the attacker can additionally
obtain the decryption key, or successfully attack the cryptosystem. This is true
regardless of the stack layer the attack originates from, or the cloud denizen who
executes it.

174 K. Smith et al.

2.1 Pre-transmission Dataset Encryption

A simple strategy having these benefits is to encrypt each dataset prior to its
transmission to the cloud, and to only decrypt it upon retrieval from the cloud.
The downside of this strategy is that cloud applications cannot operate over these
encrypted datasets, they must be downloaded before use. Consider the query “What
is the location of helicopter 21?”. In a normal cloud database deployment, the
database would look up helicopter 21, and return a very small result relative to the
size of the entire data set. For monolithic encrypted files and datasets, there is no
way for the server to look up helicopter 21. Instead of returning a small answer, the
entire database would need to be retrieved. With “big data” era terabyte and larger
datasets, downloading the entire dataset before use is simply impractical.

2.2 Data-at-Rest Encryption

Data at rest encryption protects sensitive data in a storage system, can be used with
cloud-based data, and allows computation over that data. Data is encrypted when
stored on any cloud storage device, and decrypted when requested by an application.
Data at rest encryption is used for many types of sensitive data, including personal
health data covered by HIPAA, and sensitive but unclassified military information.
Data at rest encryption is especially useful against physical attacks, such as a
stolen laptop or disk drive, and mature products exist in which the user need not
be an expert cryptographer or make large performance sacrifices. For example,
Oracle’s Transparent Database Encryption product (TDE) [14] now provides at
rest encryption for Oracle DBMS’s, exploiting new hardware encrypt/decrypt
instructions [10].

Unfortunately, data at rest encryption does not protect data in use. It requires
a decryption key to be available in the cloud so data can be decrypted and used
by applications. As mentioned earlier, many attacks are aimed exactly at obtaining
the decryption key. Furthermore, the moment a query hits a cloud application (e.g.,
a TDE encrypted database), data is decrypted and brought into cloud memory as
plaintext. Thus, attackers do not actually need to obtain the key to defeat data at
rest encryption, they simply need to exfiltrate plaintexts from cloud memory. Note
that performing data in use encryption has not been added to standard security
requirements simply because useful commercial solutions do not exist at this time.

2.3 Homomorphic Encryption and Computing Over
Ciphertexts

Homomorphic cryptosystems promise the best of both worlds:

1. The ability to expose neither plaintext data nor decryption keys in clouds.

Making Query Execution Over Encrypted Data Practical 175

2. The ability for applications to nonetheless compute over encrypted data while it
resides in the remote cloud.

Cryptosystems are valued primarily for their ability to secure information.
As a side-effect, however, operations on their corresponding ciphertexts in some
cryptosystems correspond to useful operations on plaintexts, which is called a
homomorphism [5].

For example, in the Paillier [15] cryptosystem, the modular multiplication of
two ciphertexts corresponds to the addition of their plaintexts. Thus, for two
plaintext numbers m1 and m2, given only E(m1) and E(m2) (the encryptions
of m1 and m2 respectively), and the public encryption key, it is possible to
compute E(m1 +m2) without access to the corresponding plaintexts. Other pairs
of ciphertext and plaintext operations, although not strictly homomorphic provide
identical utility. For example, in any deterministic cryptosystem, equality tests on
ciphertexts correspond to equality tests on plaintexts. Thus, through the use of such
cryptosystem properties, it is possible to perform useful operations on data without
ever decrypting it.

Paillier is additively homomorphic because its homomorphism implements
addition over plaintexts. Other cryptosystems (e.g., RSA) are multiplicatively
homomorphic. The question naturally arises as to whether any cryptosystem is fully
homomorphic, enabling any computable operation over plaintexts to be performed
using ciphertext datasets.

Since being posed in 1979, the fully homomorphic encryption (FHE) problem
remained open for over 30 years. It was recently solved by Craig Gentry [6], for
which he won the 2009 ACM Dissertation award. Although Gentry’s cryptosystem
is fully homomorphic, and semantically secure, its performance degrades sharply
with its security parameter. For a practical degree of security, performance of
Gentry’s original algorithm has been estimated to be as bad as 10 orders of
magnitude worse than the corresponding plaintext operations [4], such that a one
second computation would take over three centuries. To address this disparity, in
2011 DARPA initiated the PROCEED program [4]; research on the optimization of
FHE is now very active, with several orders of magnitude improvement realized for
various portions of FHE (e.g., key generation) [7,19]; portions of this research have
also been released as open source code [9]. However, for the foreseeable future, FHE
remains computationally impractical. In addition, an efficient FHE implementation
would not immediately enable users to execute conventional queries in a cloud-
based PBMS. As the entire DBMS would have to be rewritten as a homomorphic
function, a massively complex undertaking. Thus, in the following, we focus on the
use of homomorphisms within the context of an existing DBMS.

2.4 Making Practical Tradeoffs

The FHE algorithms in Gentry’s thesis illustrate a general principle regarding
homomorphic computing. As illustrated in Fig. 2, a three-dimensional space of
desirable features exists for homomorphic encryption: functionality, security, and

176 K. Smith et al.

efficiency. Gentry’s FHE algorithms provide full computational functionality over
plaintext, a very high level of security (i.e., semantic security), but very poor
efficiency with respect to the equivalent operations over plaintext.

A cryptosystem with ideal qualities on all three axes does not exist, however,
other useful points in this space make tradeoffs differently than Gentry’s FHE.
The Paillier cryptosystem has similar security to FHE, provides only partial
homomorphic functionality (i.e., addition), but is much more efficient than FHE
(within two orders of magnitude of plaintext addition. Microsoft researchers have
recently developed a partially homomorphic cryptosystem [13] which can add
integers in about 200 μs per addition (versus 15 μs in Paillier), however, their
partially homomorphic functionality is much greater, enabling the computation of
statistics like the variance over ciphertexts.

The key insight is that it is not necessary to realize fully homomorphic function-
ality to to provide practical benefits for users today who want to use sensitive data in
clouds. It is sufficient to securely and efficiently achieve the functionality required to
implement a useful cloud application. For example, most computations in the SQL
language can be implemented without requiring full Turing-complete functionality.

2.5 The Database as a Service Architecture

In a groundbreaking 2002 paper [8], Hacigümüş et al. proposed a software
architecture for implementing practical (i.e., sufficiently efficient, secure, and
functional) SQL computations over a remote encrypted database server (e.g.,
hosted in an outsourced cloud infrastructure). Instead of relying on a single fully
homomorphic cryptosystem, this architecture can utilize a carefully-chosen set of
partially homomorphic cryptosystems. In other words, this architecture can be used
to exploit the individual strengths of multiple points in the space of Fig. 2. Plaintext

Fig. 2 A three dimensional
tradeoff space for
homomorphic encryption

Making Query Execution Over Encrypted Data Practical 177

SQL operations are translated into the appropriate homomorphic operations, similar
to how a compiler translates programming language constructs into the appropriate
machine codes.

As shown in Fig. 3, the user’s original plaintext SQL query (bottom center)
is translated into a query over encrypted data within a trusted client (left side).
The correctness of the encrypted query is ensured by translation algorithms which
substitute plaintext SQL operations for equivalent homomorphic operations.

The encrypted query is then sent off to a standard relational DBMS at the
untrusted server (right side). While the table names, column names, and constants
of encrypted query are ciphertext, the query itself remains a syntactically correct
SQL query. The untrusted server DBMS thus naively executes it, and produces a
set of encrypted results, which are then returned to the client (the temporary results
area) and decrypted. In the final step, as discussed in the following section, the query
executor applies any necessary post-processing to the decrypted results to generate
the final correct plaintext answer, which is then returned to the user.

Thus, even though the database is fully encrypted and neither plaintexts nor
decryption keys are ever exposed to the server, the end user issues the same SQL
query and receives the same answer as if the database were standard plaintext.

2.6 Current Status and Prototypes

The vision of this paper has grown more compelling with time, as cloud architec-
tures and their need for security has increased in importance, leading to its receipt
of the 2012 ACM SIGMOD 10 year Test of Time award [1]. A large literature has
also resulted from this initial paper, exploring suitable cryptosystems (e.g., varieties
of order preserving encryption [2, 3]) and “bucketization” strategies which enable

Client Site Query
Executor

Query
Translator

Meta
Data

Web Browser
(USER)

Service Provider

Server Site
Temporary

Results
Encrypted Results

Encrypted
Client

Database

A
ct

ua
l R

es
ul

ts

Query over Encrypted Data

Original Query

Fig. 3 Database as a service architecture

178 K. Smith et al.

a tradeoff between the security and efficiency dimensions of the space in Fig. 2.
However, as cited in the Test of Time award, no practical, commercially available,
product which executes queries over encrypted data is available at this time.

Three notable prototyping projects exist, however, which provide valuable
insights into the requirements for the practical realization of this technology. The
first was developed as part of Hacigümüş’ dissertation, and includes a general
planner for encrypted query execution and introduced the bucketization strategy.
The second, CryptDB [16] was developed as part of Raluca Popa’s dissertation at
MIT. CryptDB introduced features like onion encryption, and implemented several
novel cryptosystems (e.g., a cryptosystem supporting dynamic joins between tables
whose join keys were not previously encrypted with a congruent encryption key,
along with algorithms for query processing time re-encryption of join keys). The
third system is the MITRE DataStorm project [20], which contributed the IDEA
system for generating the encrypted schema, a more detailed system architecture,
and whose general focus is identifying and addressing the major barriers to practical
computation over encrypted data.

3 Overview of Remainder of Chapter

These projects have yielded valuable insights. In the remaining sections we address
three important challenges to the practical realization of this vision of executing
database queries over encrypted data:

1. Unexecutable query operations: how do we execute query operations which
cannot be executed over encrypted data? (Sect. 3),

2. System implementation: How do we mitigate the complexity of selecting an
appropriate set of cryptosystems to apply to a specific user’s query workload,
using them to create an encrypted database on the server, and setting up a client-
server system to service user queries over encrypted data? For this technology to
be practical, a user should not be required to have a good understanding of fields
like cryptography and query planning. (Sect. 5),

3. Ciphertext query performance: In addition to encryption and decryption, homo-
morphic operations over ciphertexts may be slower than their plaintext versions,
and ciphertext expansion of plaintext may result in network delays. Where are
the “sweet spots” for the performance of encrypted queries? (Sect. 6).

In each section, we describe the challenge, discuss how it can be addressed, and
discuss the prospects for a practical solution. We draw heavily on the experiences
of the DataStorm project due to its practical direction, however we also bring in
lessons from the other two projects as well. Finally, in Sect. 7, we discuss general
prospects for the future.

Making Query Execution Over Encrypted Data Practical 179

4 Unexecutable Query Operations

The first challenge is that some user queries may contain operations which, for
several different reasons, cannot be executed over a ciphertext database. From the
perspective of relational query optimization, we typically desire to push selections
deeper in the query execution tree, but sometimes cannot. Analogously, here we
desire to push operations in the plaintext query into an encrypted execution at the
remote cloud server, but for the reasons given below, we cannot.

4.1 Reasons Operations Cannot Be Executed Over Ciphertext

While fully homomorphic encryption (FHE) is a reality, it is not a practical option
for cloud users due to its current performance profile. Without the availability
of a secure fully homomorphic cipher, we seek to compose a set of partially
homomorphic ciphers which will cover the needs of database query operations.
So far, we have presented the Paillier cryptosystem as a running example of a
partially (additively) homomorphic cipher, but there are many other possibilities.
For example, unpadded RSA and ElGamal [12] are multiplicatively homomorphic,
and the Goldwasser-Micali cryptosystem is homomorphic with respect to the
exclusive-or operation. However, at the present time, the set of operations in SQL is
greater than the set for which we have direct translations into partially homomorphic
cryptosystems. This is one reason for unexecutable query operations.

Furthermore, ciphers are of course not created equal with respect to their strength
and security; in some situations (such as the use of unpadded RSA, which loses
semantic security) although a partially homomorphic cipher may provide the desired
operation, it not be a reasonable choice because it does not meet the security
requirements of an application.

A third type of operation which cannot be executed in ciphertext is one that
results in what we call an “encryption type mismatch”, an issue first identified
in [16]. Consider the < operation in the query segment WHERE age < (SELECT
SUM(years) FROM employee). If the input to the SUM() operation (an
encryption of the integer year) is a Paillier ciphertext to enable the computation of
a summation over ciphertexts, the output will also be a Paillier ciphertext. However,
Paillier ciphertexts cannot be used in the ensuing order test, because Paillier is not an
order-preserving cryptosystem. Although plaintext operands must only agree with
their operator in datatype (e.g., string, integer), ciphertext operands must agree not
only in datatype but also in encryption type. In this example, the < order test cannot
be executed in ciphertext because its second operand is of the wrong encryption
type.

So to summarize, there are three key reasons preventing operations in plaintext
queries from being translated into operations which can be executed over ciphertext
(i.e., pushed to a cloud).

180 K. Smith et al.

1. No available homomorphic operation. The plaintext operation (e.g. string con-
catenation, cube roots) simply lacks an appropriate homomorphic ciphertext
operation.

2. Insufficiently secure homomorphic operation. Although homomorphic ciphertext
operations exist, none have a security profile which meets the requirements of a
local security policy. For example, an order test in plaintext queries (e.g., WHERE
age < 21) is directly and efficiently implemented via an order preserving
cryptosystem. However, such a cryptosystem reveals the order of the encrypted
plaintexts. If this is the only ciphertext implementation of an order test, and it
violates local security policy, order tests cannot be executed over ciphertext.

3. Encryption type mismatches. A plaintext operation cannot be translated into a
homomorphic operation whose operands have the required ciphertext type.

If a plaintext query, or a coherent plaintext query workload, contains any
unexecutable operations, encrypted query execution is unavailable without way to
address these operations. In the following we discuss the use of a post-processing
architecture to enable the execution of queries and query workloads which contain
unexecutable operations.

4.2 Post-processing

Post-processing is illustrated by the architecture in Fig. 4 (which is representative
of the Hacigümüş and DataStorm prototypes). The data owner initially encrypts
their schema and database instances and installs these on the outsourced server
as the Encrypted DB. During query processing, the user or application submits
a plaintext query Q to a middleware application (developed to enable encrypted
query execution) within its trusted client. The middleware’s planner rewrites Q into
a set of queries represented by Q′ and Q′′ in Fig. 4 which execute: (a) at the server
in the encrypted database, and (b) (for any query components with unexecutable
operations) at the client in the middleware post-processor, over decrypted plaintext
results returned from the encrypted server. A correct plan produces the same results
as running Q against the original plaintext database.

Consider query Q in Fig. 5. Q’s WHERE clause contains two parts, one which
is executable over ciphertext and one which is not (due to the SQL LIKE clause).
The planner generates query Q′ for execution at the encrypted server. Note that table
names, column names, and constants are all encrypted in Q′, however it remains a
well-formed SQL query. The encrypted database sends the results of Q′ back to the
middleware where they are decrypted. In the middleware post-processor, query Q′′
is executed (in an in-memory DBMS) over the decrypted results, applying the final
portion of the query and returning the final correct answer.

Post-processing thus makes it possible to execute queries containing opera-
tions which are unexecutable over ciphertext (e.g., LIKE, cos(), encryption type
mismatches).

Making Query Execution Over Encrypted Data Practical 181

4.3 Planning

Query planning can be simple in many cases. If the query contains no unexecutable
operations, all execution occurs at the server and the post-processing step is skipped.
For many more queries, for example Q in Fig. 5, a relatively simple “U-shaped” plan
is the best choice (i.e., it is correct and no more efficient plan can be found).

However, some queries require a more sophisticated plan. Consider a query to
retrieve all 30 year old employees who make less than the average salary:

SELECT * FROM emp
WHERE emp.age = 30 AND emp.salary <
SELECT AVG(emp.salary) FROM emp

Application

Encrypted DB

SQL
Query

Q

EDB
Query

Encrypted
Query
Results

Post-proc
Query

Final
Results

Middleware

Planner Query Post-
Processor

Fig. 4 Post processing
architecture

Original Query (Q):
SELECT Name, Salary
FROM Employee
WHERE Salary < 100,000

AND Loc LIKE ‘%McLean%’

WHERE col3 LIKE ‘%McLean%’

Encrypted DB Query ():
SELECT e(Name), e(Salary)
FROM e(Employee)
WHERE e(Salary) < e(100,000)

Post-processing Query ():
SELECT col1, col2
FROM Result

Q’

Q”

Fig. 5 Query rewriting

182 K. Smith et al.

Note that the average contains a division. If we encrypt salary with the Paillier
cryptosystem, we can compute the sum (and count) at the server over ciphertext, but
not the final division, which must be computed back at the client after decryption.
However, to execute a simple “U-shaped” execution plan would require us to bring
back the entire emp table across the network as well to compute the rest of the query,
which could be extremely costly for a large table.

A maximal push (MP) heuristic, which constructs a better performing plan, is
shown in Fig. 6. Starting with a baseline plan that returns everything to the client
for post-processing, a maximal push plan is constructed by pushing every possible
operation to the server. This heuristic is presented in the original Hacigümüş et al.
paper: “we would attempt to rewrite the query tree, such that most of the effort
of evaluating the query occurs at the server, and the client does the least amount
of work [8].” Not only can the MP plan minimize the server result set size (and
the resulting network traffic), pushing every possible operation to the server also
exploits the query optimizer, any indices, and likely much more powerful computing
resources available at the DBMS server.

Note, however, that an MP plan is not always optimal: it would be cheaper
to return the operands of a cross product and compute the cross product at the
client, than to compute the cross product at the server and return the entire result!
Thus, straightforward heuristics like the U-shaped plan, and the maximal push
plan, cover a great deal of practical cases. However, a very general query planner
for encrypted query processing must be sufficiently sophisticated to generate and
evaluate alternative query execution plans. The requirements for a given scenario
depend on the type of queries being executed, the size of data tables, and (as the
next section demonstrates) local security requirements.

5 System Implementation

A working client-server system which can execute query plans over encrypted data
can be a practical challenge to implement, due to:

1. Query diversity: The plan for one query might require cryptosystems which are:
additively homomorphic, order preserving, and deterministic, whereas the plan
for another query might require none of these. And a query might have operations
which cannot be executed by any currently available partially homomorphic
cryptosystem. Thus, some type of automated query planning is needed.

2. User scenario diversity: Interactions with users have shown dramatically differ-
ent requirements. For example, some users will not use a cryptosystem unless it
is on an approved list. Others, realizing they are exposing plaintexts, welcome the
use of novel forms of encryption. User priorities may change as well, for example
if threat levels are very high. Thus, although a planner is needed, it is difficult

Making Query Execution Over Encrypted Data Practical 183

Fig. 6 Maximal push query plan

184 K. Smith et al.

to automatically determine an encrypted query execution plan; unlike standard
query optimization with its single focus on optimizing query performance, some
user feedback about priorities is necessary to guide the generation of a good plan.

3. Cryptosystem diversity: Each partially homomorphic cryptosystem has a distinc-
tive and complex profile of security, functionality, and efficiency features. There
are frequently multiple cryptosystems of a given type (e.g., order preserving),
and more are being published every day. Thus, the job of creating the encrypted
database which will be installed on the server is a significant challenge.

Ordinary business users who simply want to execute their queries more security
cannot be required to possess depth in both cryptography and database performance,
or the promise of this technology will never be realized.

Given a plaintext database, and a query workload over it, users need to somehow
generate a ciphertext database (involving various cryptosystems) and a set of query
plans to execute their query workload over that database. To mitigate the complexity
of system implementation, the DataStorm architecture, shown in Fig. 7, includes an
intuitive multi-step workflow by which non-specialist users can accomplish these
tasks. The first two steps (design and migration) help the user create an appropriate
encrypted database. The third step (execution) enables the user to generate and
execute query plans in a client-server architecture. These steps are discussed in more
detail in the following.

1. Design Time. The interactive database encryption advisor (IDEA) automatically
generates an encryption map, a mapping from plaintext columns to encrypted
columns based on: (a) the original plaintext schema, (b) the user’s plaintext
query workload, and (c) the cryptosystems available in the encryption library.
IDEA’s initial mapping is based on generation of MP plans for each query.
Users may interactively override IDEA’s encryption recommendations (e.g., due
to local security policy constraints), causing IDEA to suggest a new encryption
map. IDEA uses a lattice-based visualization of encryption types to simplify
interaction for those unfamiliar with cryptosystems, as described in [20].

2. Migration. Based on the final encryption map and the plaintext database, the
migration tool creates the encrypted database on the server.

3. Execution. The planner takes a user’s plaintext query as an input, and builds an
execution plan, as described in Sect. 4.3. The plan object produced consists of (a)
a set of queries executed at the server, (b) a set of queries executed at the client,
and (c) operations to transform, decrypt, and encrypt data. The execution engine
traverses the plan tree, sending queries to the client and/or server as appropriate,
and assembles the final result.

Although DataStorm’s architecture does not consist of commercial grade tools,
their use has nonetheless made setting up a working client-server query system
much easier.

Making Query Execution Over Encrypted Data Practical 185

Fig. 7 DataStorm system architecture

6 Ciphertext Query Performance

A basic question potential users of encrypted database queries must ask is: how
much does it cost in performance to execute a query over ciphertext, with respect to
executing the same query over plaintext?

At a coarse level, there are three major categories of costs to consider:

1. Client processing: query planning, decryption of results, and post-processing.
2. Network: all transfers, especially returning ciphertext answers to the server.
3. Server processing: answering the ciphertext query.

Client processing times can vary widely, and are highly optimizable. For
example, Paillier decryptions take a very slow 44 ms per integer. However, opti-
mizations like hardware decryption (e.g., most new chips include AES decryption
in their instruction set), and client-side ciphertext caching can speed decryption up
significantly.

Network times are heavily impacted by the answer size. Note that this is true
for plaintext queries at a remote server as well, however ciphertext expansion (the
factor by which a ciphertext is larger than its corresponding plaintext) compounds

186 K. Smith et al.

this cost. Network times are also impacted by the network’s overall speed and by
competition for network bandwidth, but often not in a predictable fashion due to
network protocols which dynamically allocate bandwidth.

Despite hard-to-quantify variability, however, for both client processing and
network transfers smaller answer sizes are strongly correlated with better overall
query performance. This is ideal for a simple and common query like “Find the
location of Helicopter 21”. Even on a database of many terabytes, the answer size
remains small, thus little client processing or network transfer cost is incurred.

In the following, we focus solely on a direct comparison of server processing
speeds for plaintexts and ciphertexts. In Fig. 8, we compare a basic equality test
query (like the Helicopter 21 query) on an indexed field. Identical server databases
were set up in three sizes (10, 100, 1,000 K tuples), one in plaintext and one in
ciphertext at each size. The ciphertext database used AES encryption (deterministic
AES was used for the indexed field). Both query plans are identical, use the index,
and return 4 % of the server database as the answer. To eliminate network variability,
both databases were run on localhost using a standard Intel laptop with 3.5 GB of
RAM running Postgres 9.1.4. After cache warmup, timings were computed as the
average of 10 runs.

Fig. 8 Tests on equality
query; times in ms

Figure 8 shows a stable ratio of ciphertext to plaintext execution times (between
1.59 and 2.17); ciphertext being around twice as slow. Decryption and query
planning are a negligible fraction of these times. Much of this slowdown is
attributable to the increased size of ciphertexts, resulting in more data pages
being touched for the same query and data. A two-fold slowdown at the server is
acceptable in many cases, especially for queries with a small fixed size answer (e.g.,
for web queries which populate forms) whose overall cost is dominated by the delay
of communicating with a remote server over a network.

Figure 9 shows a similar experiment for a summation query; Paillier encryption
was used for the field being summed. The database performed the homomorphic
operation, a modular multiplication of ciphertexts, via a user defined aggregate
function (UDAF) written in C in about 15 μs. In this case, working with ciphertexts
is 67–82 times worse than plaintexts (still much faster than current fully homomor-
phic encryption algorithms). Note, however, that summation is an “embarrassingly
parallel” operation, and commercial clouds make it possible to rent groups of
compute servers for parallel computations. Paillier summations are thus an ideal
candidate for speedup via cloud parallelism, and this ratio could be substantially
reduced, even to unity. In addition, summation is a dramatically data reducing
operation: terabytes operands can be reduced to a single answer, which incurs little

Making Query Execution Over Encrypted Data Practical 187

network delay. Thus, massive summations and the queries that rely on them (e.g.,
averages, business intelligence aggregates) are promising candidates for encrypted
query execution as well.

Fig. 9 Tests on summation
query; times in ms

7 Conclusions

In conclusion, challenges to query execution over encrypted data do exist, including
individual query operations which cannot be executed over ciphertext, imple-
menting a working client-server query execution system, and the performance
of queries executed over ciphertext. However, as discussed in this chapter, these
are well addressed by query planning, tools which assist the user with system
implementation, and aiming for performance sweet spots, such as queries retrieving
small objects and parallel summation queries.

As new cryptosystems are continually being developed and cloud services (e.g.,
parallelism on demand) grow, the future of encrypted query processing for cloud
security is promising. Synergy between the information management and cryptog-
raphy research communities, with their differing focus and priorities, is improving
and has recently resulted in beneficial research. As that dialogue continues to grow,
it will benefit this developing area. Further work is needed to develop commercial
grade query planners/optimizers and system implementation tools, and efficient and
secure cryptosystems with the partially homomorphic functionality to enable more
types of queries to be processed at the server instead of post-processing.

References

1. ACM, Test of time award, www.sigmod.org/2012/awards_sigmod.shtml, 2012.
2. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu, Order preserving

encryption for numeric data, Proceedings of the 2004 ACM SIGMOD international conference
on Management of data (New York, NY, USA), SIGMOD ’04, ACM, 2004, pp. 563–574.

3. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill, Order-preserving
symmetric encryption, Advances in Cryptology – EUROCRYPT 2009 (Antoine Joux, ed.),
Lecture Notes in Computer Science, vol. 5479, Springer Berlin Heidelberg, 2009, pp. 224–
241.

4. DARPA, The darpa program for programming comuptation on encrypted data (proceed),
http://www.darpa.mil/Our_Work/I2O/Programs/, 2013.

www.sigmod.org/2012/awards_sigmod.shtml
http://www.darpa.mil/Our_Work/I2O/Programs/

188 K. Smith et al.

5. Caroline Fontaine and Fabien Galand, A survey of homomorphic encryption for nonspecialists,
EURASIP Journal on Information Security 1 (2007).

6. Craig Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009.
7. Craig Gentry and Shai Halevi, Implementing gentry’s fully-homomorphic encryption scheme,

Advances in Cryptology – EUROCRYPT 2011 (KennethG. Paterson, ed.), Lecture Notes in
Computer Science, vol. 6632, Springer Berlin Heidelberg, 2011, pp. 129–148.

8. Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra, Executing sql over encrypted
data in the database-service-provider model, Proceedings of ACM SIGMOD (New York, NY,
USA), SIGMOD ’02, ACM, 2002, pp. 216–227.

9. IBM, Ibm homomorphic encryption library project on github, https://github.com/shaih/HElib,
2013.

10. Intel, Intel advanced encryption standard instructions (aes-ni), http://software.intel.com
/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/, 2011.

11. Witold Litwin, Sushil Jajodia, and Thomas Schwarz, Privacy of data outsourced to a cloud
for selected readers through client-side encryption, Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society (New York, NY, USA), WPES ’11, ACM, 2011,
pp. 171–176.

12. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryptography,
Discrete Mathematics and Its Applications, Taylor & Francis, 2010.

13. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan, Can homomorphic encryption be
practical?, Proceedings of the 3rd ACM workshop on Cloud computing security workshop
(New York, NY, USA), ACM, 2011, pp. 113–124.

14. Oracle, Oracle advanced security transparent data encryption best practices, http://www.
oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf,
March 2012.

15. Pascal Paillier, Public-key cryptosystems based on composite degree residuosity classes,
Advances in Cryptology (EUROCRYPT ’99), Lecture Notes in Computer Science 1592
(1999), 223–238.

16. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan,
Cryptdb: protecting confidentiality with encrypted query processing, Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (New York, NY, USA),
SOSP ’11, ACM, 2011, pp. 85–100.

17. Reuters, German state ready to buy stolen bank data source, blogs.reuters.com/financial-
regulatory-forum/2010/02/04/german-state-ready-to-buy-stolen-bank-data-source/, 2010.

18. Amazon Web Services, products page, aws.amazon.com/products, 2013.
19. N.P. Smart and F. Vercauteren, Fully homomorphic simd operations, Designs, Codes and

Cryptography (2012), 1–25.
20. Ken Smith, Ameet Kini, William Wang, Chris Wolf, M. David Allen, and Andrew Sillers, Intu-

itive interaction with encrypted query execution in datastorm, 2012 IEEE 28th International
Conference on Data Engineering (ICDE), April 2012, pp. 1333 –1336.

21. Colin Tankard, Advanced persistent threats and how to monitor and deter them, Network
Security 2011 (2011), no. 8, 16 – 19.

22. Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart, Cross-vm side channels
and their use to extract private keys, Proceedings of the 2012 ACM conference on Computer
and communications security (New York, NY, USA), ACM, 2012, pp. 305–316.

https://github.com/shaih/HElib
http://software.intel.com
/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf
http://www.oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf

Privacy-Preserving Keyword Search Over
Encrypted Data in Cloud Computing

Wenhai Sun, Wenjing Lou, Y. Thomas Hou, and Hui Li

Abstract Search over encrypted data is a technique of great interest in the cloud
computing era, because many believe that sensitive data has to be encrypted before
outsourcing to the cloud servers in order to ensure user data privacy. Devising an
efficient and secure search scheme over encrypted data involves techniques from
multiple domains – information retrieval for index representation, algorithms for
search efficiency, and proper design of cryptographic protocols to ensure the security
and privacy of the overall system. This chapter provides a basic introduction to
the problem definition, system model, and reviews the state-of-the-art mechanisms
for implementing privacy-preserving keyword search over encrypted data. We also
present one integrated solution, which hopefully offer more insights into this
important problem.

1 Introduction

We are in such an information-explosion era that constantly purchasing new hard-
ware, software and training IT personnel is becoming a nightmare for almost every
IT practitioner. Fortunately, we are witnessing an enterprise IT architecture shift

W. Sun (�)
The State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, Shaanxi, China

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
e-mail: whsun@xidian.edu.cn

W. Lou • Y.T. Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
e-mail: wjlou@vt.edu; thou@vt.edu

H. Li
The State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, Shaanxi, China
e-mail: lihui@mail.xidian.edu.cn

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__9,
© Springer Science+Business Media New York 2014

189

mailto:whsun@xidian.edu.cn
mailto:wjlou@vt.edu
mailto:thou@vt.edu
mailto:lihui@mail.xidian.edu.cn

190 W. Sun et al.

to a centralized, more powerful computing paradigm – Cloud Computing, in which
enterprise’s or individual’s databases and applications are moved to the servers in the
large data centers (i.e. the cloud) managed by the third-party cloud service providers
(CSPs) in the Internet. Cloud computing has been gradually recognized as the most
significant turning point in the development of information technology during the
past few years. People are fascinated by the benefits it offers, such as ubiquitous and
flexible access, on-demand computing resources configuration, considerable capital
expenditure savings, etc. Indeed, many companies, organizations, and individual
users have adopted the cloud platform to facilitate their business operations,
research, or everyday needs [35].

Despite the tremendous business and technical advantages, what we shall always
keep in mind is that cloud computing would not be our wonderland until users’
outsourced sensitive data could hide from the prying eyes. Privacy concern is one of
the primary hurdles that prevent the widespread adoption of the cloud by potential
users, especially if the private data of users used to reside in the local storage are
to be outsourced to and computed in the cloud. Imagine that CSPs host the services
looking into your personal emails, financial and medical records, and social network
profiles. Although these sensitive data could be protected by deploying intrusion
detection systems, firewalls, or even segmenting data in a virtualized environment,
CSP possesses full control of the cloud infrastructure including the system hardware
and lower levels of software stack. Privacy breach is still likely to occur owing to
the existence of disgruntled, profiteered or curious employees from CSP [25, 37].
Encrypting-then-outsourcing [28,48] provides us strong guarantee that no one could
mine any useful information from the ciphertext of users’ data. Many people argue
that sensitive data has to be encrypted before outsourcing in order to provide user
data privacy against the cloud service providers. However, encrypted data makes
data utilization a very challenging task. One example is keyword search functions
on the documents stored in the cloud. Without those usable data services, the cloud
will become merely a remote storage which provides limited value to all parties.

Computation over encrypted data is a challenging task and has drawn significant
attention due to the encrypting-then-outsourcing paradigm in cloud computing. It
will be remiss if we don’t mention fully homomorphic encryption [16], which
is considered the Holy Grail of cryptography. Fully homomorphic encryption
scheme will allow us to operate directly over ciphertext and generate results
matching the computation over plaintext. A theoretical break-through on fully
homomorphic encryption took place a few years ago [16]. However, the efficiency
of the construction is still far from being practical. Much research work has been
focusing on special classes of computation [2,3,19,44]. Search over encrypted data
is a fundamental and common form of data utilization service, enabling users to
quickly sort out information of interest from huge amount of data, and thus has
become a topic of great interest recently. Both public key cryptography (PKC) and
symmetric key cryptography (SKC) can be used to build encrypted data search
schemes. Generally speaking, PKC-based schemes [7,9,18,20] are more expressive,
support more flexible search functions, but more computationally intensive, while

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 191

SKC-based schemes [11,15,17,42] are more efficient in searching, but less flexible
in the types of search criteria supported.

This chapter aims to provide a general overview of search techniques over
encrypted data and their security and privacy objectives, and then elaborate on
a scheme that can achieve privacy-preserving multi-keyword search supporting
similarity-based ranking, based on [10] and [39]. The chapter is organized as
follows. In Sect. 2, we will introduce the encrypted data search problem in terms
of its problem formulation and review related works. We will delve into multi-
keyword ranked search in Sect. 3, and further improve search result accuracy and
search efficiency in Sect. 4. We will conclude this chapter in Sect. 5.

Data owner Data users

encrypted

data & index

search control(trapdoors)
access control(data decryption keys)

Semi-trusted
cloud server

search requestranked result

Fig. 1 Architecture of encrypted data search problem (From [10])

2 Overview of Search Over Encrypted Data

2.1 Problem Formulation

In this subsection, we will briefly introduce the general system model of the
encrypted data search problem, its threat model and search privacy related require-
ments in the following.

System Model

The typical participants of a secure search system in the cloud involve the cloud
server, the data owner, and the data user, as shown in Fig. 1. The data owner
outsources the encrypted dataset and the corresponding secure indexes to the cloud
server, where data can be encrypted using any secure encryption technique, such as
Advanced Encryption Standard (AES), while the secure index is generated by some
particular search-enabled encryption techniques. When a data user wants to query

192 W. Sun et al.

the outsourced dataset hosted on the cloud server, he/she first either generates a
trapdoor with the keyword of interest (applied to most PKC-based search schemes),
or requests such trapdoor by sending a set of intended keywords to the data owner
(in the case of SKC-based search schemes). In the latter case, upon receiving the
trapdoor generation request, the data owner constructs the trapdoor, and return it
to the user. Then the data user submits the trapdoor to the cloud server. The cloud
server will execute the search program with the trapdoor as the input, the search
results will be sent back to the user. Note that here we assume there is pre-existing
security context between each user and the data owner thus authentication between
user and data owner is already in place. The trapdoors can be requested and returned
through a secure channel. The management of the decryption keys of the returned
files is an orthogonal problem and has been studied separately [28, 48]. Search
can be based on certain search criteria and the results be ranked based on certain
ranking criteria so that the server returns all the matching documents or only the
top-k most relevant ones to the user so as to realise effective and efficient data
retrieval functionality, and mitigate the corresponding communication overhead,
where k could be predefined by the user at the trapdoor submission time.

Threat Model

The typical threat model that most secure search schemes adopt [6, 10, 27, 39, 43]
is to consider the cloud server to be “honest-but-curious”, that is the cloud server
“honestly” follows the designated protocol specification, but it is “curious” to infer
and analyze data (including indexes) in its storage and message flows received
during the protocol in order to learn additional information.

Search Privacy

In the literature, many privacy requirements are defined for PKC-based and SKC-
based search schemes. We briefly introduce these search privacy requirements as
follows.

1. Keyword Privacy: One of the major privacy concerns is how to protect the
keywords of interest in a user’s trapdoor against the cloud server. In other words,
cloud server is not able to infer what the data user is searching. This fundamental
privacy requirement should be satisfied for any valid encrypted data search
scheme. Although trapdoor generation can be performed in a cryptographic way
to protect the query keywords, the cloud server could identify the searched
keywords by other side channel attacks, such as frequency analysis attack [39,
40, 43, 49]. Given the keyword-specific document frequency information (the
number of documents containing the keyword) or the keyword frequency (the
occurrence count of a keyword in a document) distribution information in a
particular dataset, it is sufficient for an attacker to reverse-engineer the keyword
in a trapdoor. Notice that this privacy requirement is referred to as predicate

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 193

privacy in the PKC-based search scenario and it cannot be protected inherently
for any asymmetric secure search scheme [34].

2. Trapdoor Unlinkability: It is required that the trapdoor should be generated in
a random manner. Otherwise, given any two trapdoors, the attacker can easily
determine the relationship of them, such as whether they contain the same set
of keywords. Therefore, sufficient nondeterminacy should be introduced into the
trapdoor generation algorithm. It is worth noting that violation of this privacy
requirement can further compromise the keyword privacy in that it allows the
cloud server to accumulate frequencies of different search requests with respect
to different keyword(s).

3. Access Pattern: It is defined to be the sequence of returned documents. Note that
protecting access pattern by using private information retrieval technique [12,21]
is extremely expensive since the algorithm has to “touch” the whole dataset
outsourced on the cloud server which is inefficient in the large scale cloud
system. Thus for efficiency concerns, most of the search over encrypted data
schemes do not aim to protect it.

2.2 PKC-Based Search vs. SKC-Based Search

In PKC-based search schemes, different keys are used to generate index and
trapdoor, such that a data user is usually free to produce a trapdoor by his/her
keywords of interest without interacting with a data owner. Thus, this technique
is much more suitable for some dynamic environment, e.g., when multiple data
contributors and multiple data users exist in one search system. Otherwise, in SKC-
based search, to search datasets from multiple data owners, a data user has to
obtain these trapdoors from each individual data owner. This communication cost
is definitely cumbersome to the user in such a multi-user and multi-data-contributor
scenario. In addition, PKC-based search schemes can achieve more flexible and
expressive queries compared with SKC-based schemes in general. For example,
range query, subset query, etc., can be easily realised by PKC-based search schemes.
In symmetric setting, how to generate trapdoors with similar functionalities is still
a challenging problem.

It is worth noting that multi-keyword search can be achieved in both symmetric
and asymmetric settings. By incorporating some ranking criteria, a data user is able
to enjoy ranked search results by the relevance of documents to the query. Although
conjunctive keyword search over encrypted data schemes in public-key setting
also provide multi-keyword search function, it often lacks ranking functionality.
Moreover, another unparalleled advantage of SKC-based search over PKC-based
one is that the overall search process is much more efficient, since asymmetric
search usually incurs a lot of time-consumed paring operations. Thus, there has
been significant interest in developing efficient SKC-based encrypted data search
mechanisms.

194 W. Sun et al.

In what follows, we review some important related works built from either PKC
or SKC technique.

PKC-Based Search

Inspired by identity-based encryption [8], Boneh et al. [7] propose the first PKC-
based keyword search scheme with single keyword query, where anyone with public
key can write to the data stored on server but only data users with private key
can search. Following this work, a lot of PKC-based search schemes have been
proposed to enrich the search functionalities. The scheme from [18] supports search
queries with conjunctive keywords by explicitly indicating the number of encrypted
keywords in an index, that is each keyword within a document is transformed to be
a part of the index for this document. When doing query, the server should know
which randomized keywords in the index need to be used for match evaluation.
This information leakage may raise some privacy concerns. The authors in [20]
also present a conjunctive keyword search over encrypted data scheme. They group
the queried keywords together in an index to mitigate keyword privacy breach. But
this is not flexible, since the data owner has to generate all the possible keyword
combinations in one index. In addition, they extend the proposed secure keyword
search to multi-user setting, where an encrypted index can be searched by various
users holding different private keys. Predicate encryption (PE) [4,9,23,36] is another
promising technique to fulfill the expressive search functionality over encrypted
data. For example, the proposed scheme in [9] supports conjunctive, subset and
range queries, and disjunctions, polynomial equations, and inner products could be
realised in [23]. Li et al. [27] use the hierarchical predicate encryption technique
to build an authorized keyword search scheme in the cloud. In their design, only
authorized data users can be granted search capability, and unauthorized users
are not allowed to search the dataset on the cloud server. Nevertheless, these PE-
based secure search schemes are generally too computationally intensive to be
implemented for practical use.

SKC-Based Search

Curtmola et al. design a symmetric secure search scheme supporting single keyword
queries with security guarantees under rigorous definitions [15]. Owing to the
adoption of inverted index [31] as the underlying index structure in their scheme, the
search process can be extremely efficient. In [40, 43, 49], the order-preserving tech-
niques are utilized to protect the rank order. By incorporating keyword frequency
information and inverted index structure, they can achieve accurate and efficient
search at the same time, but only single keyword query is supported. In addition,
Kamara et al. [22] propose a dynamic version of [15] with the ability to add and
delete files efficiently. In multi-user setting [6,47], the authors separately present an
encrypted data search schemes in the enterprise environment. Specifically, the data

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 195

user must be authorized before he/she can search the dataset, where authorization
is enforced by a user list stored and managed by enterprise servers. Note that
they differ from the PKC-based work [20] in terms of the allowed number of
data contributors. Under the symmetric-key setting, merely one data contributor
(enterprise) is allowed in their designs. In [17], the author formulates an IND-
CKA security model for indexes, i.e., indistinguishability against chosen keyword
attack, and a stronger model IND2-CKA. He also exploits pseudo-random functions
and bloom filter to generate a secure index for each file, and its search time is
proportional to the number of files in the dataset. The main problem of this scheme is
that the final search results inevitably contain false positive due to bloom filter being
the underlying index construction technique. Chang et al. [11] present a similar
security model to IND2-CKA, and propose a secure search scheme with the index
built from pseudo-random functions. Cao et al. [10] propose the first SKC-based
encrypted data search scheme supporting multi-keyword ranked search where an
index is generated using secure inner product technique. The ranking is realised by
similarity measure of coordinate matching. Later, Sun et al. [39] present another
secure multi-keyword search scheme in the cloud enabling more accurate search
result ranking by using the state-of-the-art similarity measure, i.e., cosine measure
in the vector space model, and design a search algorithm over the proposed tree-
based index structure to fulfill more efficient search complexity in practice.

2.3 Exact Keyword Search vs. Fuzzy Keyword Search

Unlike the exact keyword search schemes above, it is common that keywords may
be entered by a user which contain typos, but the search engine (e.g., Google search)
is still capable of tolerating them and returning what the user intends. Thus, fuzzy
keyword search technique is often used to rectify the mistakes. For the search
algorithm to better understand the difference between a correct keyword and its
typo, we need a similarity measurement to be supported in the underlying encrypted
data search scheme, such that the matching files will be returned when the user’s
search request exactly matches the keyword in the index or the difference is within
some predefined tolerance range.

Li et al. [26] propose a fuzzy keyword search over encrypted data scheme in the
cloud. For each keyword, they first construct a wildcard keyword set containing all
the variants of the keyword. Upon receipt of the trapdoor, they exploit edit distance
to quantify keyword similarity. If the intended keyword is within the fuzzy keyword
set, it will be considered a keyword match. By the similar techniques, Liu et al. [29]
present another fuzzy keyword search scheme with a size-reduced index. In [13],
the authors use a B-tree [14] based index structure to construct a fuzzy keyword
search scheme, where although they claim the support of multiple keyword search
capability, they only group several keywords together to form a phrase. This is
analog to some conjunctive keyword search schemes [20] in public-key setting,

196 W. Sun et al.

which is apparently not flexible in the sense that a data user is not able to query
any combination of keywords of his/her choice if this keyword combination is not
considered by the data owner at the index generation phase.

2.4 Secure Index-Based Search

Since Song et al.’s seminal work [38], searchable encryption has drawn a lot of
attention. Their work enables in-line text search within an encrypted document.
Specifically, their scheme encrypts each document word by word and performs
full-domain search such that it takes linear operations to cover all the documents.
Later, to improve the search efficiency, many secure search schemes have been
proposed, where queries can be executed over encrypted indexes (rather than
encrypted data themselves) by users who possess proper “trapdoors”. This applies to
all the encrypted data search schemes mentioned above. To design a keyword search
over encrypted data scheme, a series of important factors should be considered as
follows.

Index Structure

In general, there are three kinds of index structures often used to construct encrypted
data search schemes:

• Index organized by keywords: Such index data structure is usually called
inverted index, or inverted file [31]. In this data structure, each keyword is
followed by a file list which consists of all the files in the dataset containing this
keyword. The advantage of this index structure is to allow significantly efficient
text search instead of the full domain text search. But when a file is added to
the dataset, it needs increased processing since all the indexes containing the
keywords in this file have to be updated. This kind of index structure is widely
used in encrypted data search schemes [15,22,40,43,49] due to its extremely fast
search process. Note that search schemes with this keyword-based index structure
can only realise single keyword query.

• Index constructed per document: Another popular index structure adopted by
many secure search schemes [10, 11, 17, 20] is to construct an index for each file
in the dataset such that one file update usually affects only one corresponding
index. The index structure is specific to each document and is generated by all
the keywords contained in the target document.

• Tree-based index structure: Index structure can also be constructed based on
some well-developed tree structures, such as B-tree [14], MDB-tree [33], etc. A
few existing works [30,39] exploit tree-based structures to design efficient secure
search schemes in different scenarios.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 197

Secure Search Algorithm

According to different data structures, search over encrypted data schemes may
use different secure search algorithm to do the match. The inverted index structure
allows fast direct intended file retrieval, so the search complexity is constant there.
For example, the indexed keywords can be hashed and then store the associated file
list at a table with its address being the hash value . When a user wants to search a
keyword of interest, he/she first hashes it and submits the hash value to the server.
Therefore, the server is able to find out the intended files efficiently.

For schemes with index built from each document, the most efficient search
algorithm merely enables linear search, i.e., the time for search is linear to the
number of documents in the dataset, since the returned search results could not
be determined until the search process goes through all the indexes within the
document set. This is not desirable when a huge amount of data are present on
the server.

By utilizing tree-based structures to construct indexes for encrypted data search
schemes, the corresponding secure search algorithm could be devised to achieve
more efficient search than the linear search schemes. At the meantime, the same
expressive queries as the schemes with index built per document could be realised
under this index structure, such as range queries in database scenario [30] and multi-
keyword text search with similarity-based ranking [39].

Similarity-Based Ranking

To enhance user searching experience and meet more effective data retrieval need,
two fundamental aspects have to be considered when designing a practical encrypted
data search scheme. On one hand, most of today’s search engines on the Internet
(e.g., Google search) allow users to query multiple keywords in one search request
instead of only one as the indicator of their search interest. Compared with single
keyword query, the main advantage of this multi-keyword search is that it can
yield more relevant search results efficiently. On the other hand, ranked search
functionality is preferable in the “pay-as-you-go” cloud paradigm. The reason is
that cloud server could conduct relevance ranking operation for data user and return
the most relevant set of files, rather than directly sending back the undifferentiated
search results to data user. As such, the network traffic between cloud server and
data user could be dramatically reduced.

By securely incorporating advanced similarity measures into the design of
encrypted data search schemes, ranking functionality could be realised during
search process with a multi-keyword trapdoor. These adopted similarity measures
are borrowed from plaintext information retrieval community, such as coordinate
matching, cosine measure in the vector space model [45]. As a result, the con-
structed encrypted data search schemes enjoys the same flexibility and search result
accuracy as the existing multi-keyword search over plaintext.

198 W. Sun et al.

3 Privacy-Preserving Multi-keyword Ranked Search

Cao et al. [10], for the first time, explore the problem of multi-keyword ranked
search over encrypted cloud data (MRSE), and establish a set of strict privacy
requirements for such a secure cloud data utilization system. They propose two
MRSE schemes based on the similarity measure of coordinate matching while
meeting different privacy requirements in two different threat models. One is known
ciphertext model, where the cloud server is supposed to only know encrypted
dataset and searchable index, both of which are outsourced from the data owner.
The other is known background model, in which the cloud server could possess
more knowledge than what can be accessed in the known ciphertext model, such as
document frequency information. At the meantime, they execute thorough security
analysis and experiment evaluation on the real world dataset to demonstrate the
privacy and efficiency guarantees of their proposed schemes. In the remaining of
this section, we will discuss this work.

3.1 Technical Overview for MRSE

Coordinate Matching

To support multi-keyword ranked search, the similarity measure, coordinate match-
ing [45], is incorporated into the MRSE schemes. This similarity measure counts
the number of query keywords appearing in the documents to quantify the relevance
of that document to the query. The more query keywords that appear in a document,
the more relevant the document to the query. This similarity measure is thought of
as a hybrid intermediate between conjunctive and disjunctive search. Any document
with all or partial keywords matching is considered a part of the search results.
To formalize such similarity measure in practice, they use inner products of the
query vector and a set of document index vectors to reflect the predilection of
the data user for documents. For example, assume that a dictionary is defined as
{search,cloud, privacy,network,security}. There are two documents A,B in the
dataset. Therefore, set the index vector as a binary vector DA = (1,0,0,1,1) for
document A if it only contains keywords {search,network,security}, where 1 is
used to indicate the existence of some keyword in the document and 0 otherwise. If
the keywords {search,cloud,security} appears in the document B, the binary index
vector DB is defined to be (1,1,0,0,1). Suppose that the data user has a query with
the intended keywords {seach,cloud, privacy}. Thus the binary query vector Q is
represented as (1,1,1,0,0). We can calculate the inner products of the query vector
Q and the index vectors DA,DB as the similarity scores of documents A and B:

SimilarityScoreA = Q ·DA = (1,1,1,0,0) · (1,0,0,1,1) = 1,

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 199

and

SimilarityScoreB = Q ·DB = (1,1,1,0,0) · (1,1,0,0,1) = 2.

Therefore, we can deduce that the data user would prefer document B to document
A since the similarity score of B is greater than that of A. Also, it yields a ranking
B > A.

By using the coordinate matching similarity measure, effective multi-keyword
ranked search functionality could be realised. Nevertheless, such measure is orig-
inally designed for plaintext information retrieval purpose. How to apply it to
the encrypted data search without breaching search privacy is a very challenging
problem.

Search with Secure Inner Product Evaluation

To use the above mentioned similarity measure in a privacy-preserving way, index
vector Dd for each document d, query vector Q and their inner product Dd ·Q
should not be exposed to the cloud server. In MRSE, the authors propose a secure
inner product scheme which is adapted from a secure k-nearest neighbor (kNN)
technique [46] to hide these sensitive information.

In database scenario, secure kNN technique can be exploited to select k nearest
database records to the query by comparing the Euclidean distance between them.
Specifically, each record in the database and the query can be represented by an
n-dimensional vectors pi and q respectively. The secret key consists of one (n+ 1)-
dimensional vector S and two (n+1)× (n+1) invertible matrices M1 and M2. Then
after vector extension, a new pi is set as (pi,−0.5||p2

i ||) and a new query vector q
is (rq,r), where r > 0 is a random number. As per the splitting indicator S, pi is
split into two vectors as {p′i, p′′i } and q is also split into two vectors {q′,q′′} such
that pi and q can be recovered given S, {p′i, p′′i } and {q′,q′′}. Eventually, the vector
pairs {p′i, p′′i } and {q′,q′′} are encrypted as {MT

1 p′i,MT
2 p′′i } and {M−1

1 q′,M−1
2 q′′}

respectively. At the database search phase, the product of encrypted record vector
pair and encrypted query vector pair, i.e., −0.5r(||pi||2− 2pi · q), is serving as the
indicator of Euclidean distance (||pi||2−2pi ·q+ ||q||2) to select k nearest neighbors.
Without prior knowledge of secret key, neither record vector nor query vector,
after such a series of processes, can be recovered by analyzing their corresponding
ciphertext.

Cao et al. modify this secure kNN technique to measure the inner product
similarity instead of the Euclidean distance. In particular, trapdoor vector Q is
extended to be (rQ,r, t), where r, t are two random numbers and r > 0, such that it is
difficult for the cloud server to infer the relationship among the received trapdoors.
To obfuscate the document frequency and diminish the chances for re-identifying
the keywords, the final similarity scores should be further randomized. Thus some
randomness εd is introduced into the index vector Dd , and Dd is extended into

200 W. Sun et al.

(Dd ,εd ,1). The encrypted index vector pair Id = {MT
1 D′d ,M

T
2 Dd

′′} and trapdoor
vector pair T = {M−1

1 Q′,M−1
2 Q′′} are generated after applying the vector splitting

and matrix multiplication. The final similarity score for document d to the query
vector would be:

Id ·T = {MT
1 D′d ,M

T
2 D′′d} · {M−1

1 Q′,M−1
2 Q′′}

= D′d ·Q′+D′′d ·Q′′

= (Dd ,εd ,1) · (rQ,r, t)

= r(Dd ·Q+ εd)+ t.

By using this equation, the ranked search result can be produced.
This vector encryption method has been proved to be secure in the known

ciphertext model [46]. As long as the secret key is kept confidential, the underlying
plaintext information in the index vector and trapdoor vector cannot be revealed.

50 70 90 110 130 150
50

60

70

80

90

100

of retrieved documents

P
re

ci
si

on
 (

%
)

σ = 1
σ = 0.5

50 70 90 110 130 150
0

10

20

30

40

50

of retrieved documents

R
an

k
P

riv
ac

y
(%

) σ = 1
σ = 0.5

a b

Fig. 2 Tradeoff between (a) precision, and (b) rank privacy by selecting different standard
deviation σ (From [10])

Note that, let εd follow a Normal distribution N(μ ,σ2), where the standard deviation
σ functions as a flexible trade-off parameter between search accuracy and security.
To protect keyword privacy, a large σ is selected to introduce more obfuscation
into the final similarity score, from which it is difficult for the cloud server to
gain statistical information about the original similarity score, but the search result
could be less accurate. Thus from the viewpoint of the effective search, small σ is
preferable. This is shown in Fig. 2.1 Due to the splitting process and the random

1Precision is defined to be the fraction of returned top-k documents that are included in the real top-
k list, while rank privacy measures the rank order variation between the returned top-k documents
and real top-k documents.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 201

numbers r, t, the trapdoor generation algorithm can output two different trapdoors
even for the same search request to guarantee trapdoor unlinkability.

To further protect search privacy in the known background model, an enhanced
MRSE scheme is proposed. The main modification is to insert more dummy
keywords ∑εd instead of only one fixed εd into the index vector for each document.
The level of search accuracy remains the same with the previous basic MRSE
scheme if let ∑εd follow a Normal distribution as well.

Cao et al. for the first time, define and solve the problem of multi-keyword
ranked search over encrypted cloud data by combining the efficient similarity
measure “coordinate matching” with the adapted secure inner product technique.
The proposed schemes can meet various stringent privacy requirements while
retaining effective search functionalities.

4 Improvement on Search Accuracy and Efficiency

4.1 Background

Although MRSE can achieve multi-keyword ranked search, there exists a gap
between MRSE and the state-of-the-art plaintext information retrieval techniques in
terms of search accuracy and search efficiency. On one hand, the similarity measure
“coordinate matching” in MRSE has some drawbacks when used to evaluate the
document ranking order. First, it takes no account of term2 frequency such that any
keyword appearing in a document will present in the index vector as binary value
1 for that document, irrespective of the number of its appearance. Obviously, it
fails to reflect the importance of a frequently appeared keyword to the document.
Second, it takes no account of term scarcity. Usually a keyword appearing in only
one document is more important than a keyword appearing in several ones. In
addition, long documents with many terms will be favored by the ranking process
because they are likely to contain more terms than short documents. Hence, due to
these limitations, the heuristic ranking function, “coordinate matching”, is not able
to produce more accurate search results. More advanced similarity measure should
be adopted from plaintext information retrieval community, such as cosine measure
in the vector space model [45]. On the other hand, the search complexity of MRSE
is linear to the number of documents in the dataset, which becomes undesirable and
inefficient when a huge amount of documents are present, while many efficient index
structures exist in the plaintext information retrieval techniques, e.g., B-tree [14],
inverted index [31], etc.

Sun et al. [39] present a privacy-preserving multi-keyword text search (MTS)
scheme in the cloud supporting similarity-based ranking to address the challenge of

2We do not differentiate term and keyword hereafter.

202 W. Sun et al.

constructing more accurate, practically efficient and flexible encrypted data search
functionalities. Specifically, the index vector for each document is generated based
on the cosine measure in the vector space model to support multi-keyword query
and search result ranking functionality, and utilize the “term frequency (TF) ×
inverse document frequency (IDF)” weight to achieve high search result accuracy.
By incorporating the state-of-the-art information retrieval technique, the proposed
MTS schemes enjoy the same flexibility and search result accuracy as the existing
state-of-the-art multi-keyword ranked search over plaintext. In order to improve
the search efficiency, they propose a tree-based index structure, where each value
in a node is a vector of term frequency related information. Furthermore, an
efficient search algorithm is presented to realise more efficient search functionality
compared with [10]. To satisfy various search privacy requirements, two secure
index schemes for multi-keyword text search with similarity-based ranking are
devised. The basic scheme (BMTS) is secure under the known ciphertext model,
and the other enhanced secure index scheme (EMTS) is constructed against sensitive
frequency information leakage to meet more stringent privacy requirements under
the stronger threat model, i.e., known background model.

Data user

...

Fig. 3 Framework of MTS (From [39])

4.2 Technical Overview of MTS

The system framework in [39] is analog to [10] as shown in Fig. 3, wherein three
participants, i.e., the data owner, the data user and the cloud server, are defined. Note
that the index vectors are organized as a secure index tree instead of each individual
vector before outsourced to the cloud server. Assume the cloud server still acts in an

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 203

“honest-but-curious” manner. Since the term frequency information is incorporated
into the ranking function, in the known background model the attacker may extract
such statistical information from a known comparable dataset of the similar nature to
the target dataset, e.g., the TF distribution information of a specific keyword. Given
such statistical information, the cloud server is able to launch statistical attack to
deduce/identify particular keywords in the query [40, 43, 49].

Vector Space Model

Vector space model is one of the most popular similarity measures in the plain-
text information retrieval community, supporting both conjunctive and disjunctive
search. The ranking order for a particular document set is determined by comparing
the deviation of angles, i.e., cosine values, between each document vector and the
query vector. The cosine measure allows accurate ranking due to the “TF×IDF
rule”, where TF denotes the occurrence count of a term within a document,3 and
IDF is obtained by dividing the total number of documents in the collection by the
number of documents containing the term.4 Thus, unlike the coordinate matching,
each dimension of an index vector in MTS is a TF weight wd,t , and a query vector is
comprised of IDF weights wq,t , where d, t denote a specific document in the dataset
and a term in the dictionary respectively. The ranked search functionality can be
achieved by the following similarity function:

Cos(Dd ,Q) =
1

WdWq
∑

t∈Q∩Dd

wd,t ·wq,t ,

where Wd =
√

∑t∈Q∩Dd
w2

d,t , Wq =
√

∑t∈Q∩Dd
w2

q,t . Thus, the index vector Dd and

query vector Q are both unit vectors.

Secure index tree

D1 Dd,1

Dd,2

Dd,h

...

GenIndex

Search
request

 ...

GenIndex

GenIndex

...

Dm

Documents Index vectors

Dd

Tree-based
search algorithm

Q

Qh

Q1

Q2

Query

Query vector

GenQuery

GenQuery

GenQuery

...... ...

Ranked top k
search result

...

Fig. 4 Overview of secure index scheme (From [39])

3It is used to measure how important a specific term is to a particular document.
4It implies that this frequency of a term tends to be inversely proportional to its ranking.

204 W. Sun et al.

Secure Index Scheme

To construct the index tree structure, the original long document index vector Dd

has to be divided into multiple sub-vectors such that each sub-vector Dd,i represents
a subset of keywords, and becomes a part of the i-th level of the index tree, as shown
in Fig. 4. Similarly, let Qi be the query sub-vector at the i-th level. As such, the final
similarity score for document d can be obtained by summing up the scores from each
level. Based on these similarity scores, the cloud server determines the relevance of
document d to the query Q and sends the top-k most relevant documents back to
the user. The similar secure inner product scheme [10] is adopted here but applied
to each level of the index tree. In addition, they do not use the dimension extension
technique for BMTS in the known ciphertext model. The similarity score at the i-th
level is computed as follows:

Cos(D̃d,i, Q̃i) = {MT
1,iDd,i

′,MT
2,iDd,i

′′} · {M−1
1,i Qi

′,M−1
2,i Qi

′′}
= Dd,i

′ ·Qi
′+Dd,i

′′ ·Qi
′′

= Dd,i ·Qi,

where D̃d,i and Q̃i represent the encrypted forms of index vector and query vector
at the i-th level respectively. Hence, the final similarity score for document d is
∑h

i=1 Dd,i ·Qi = Dd ·Q by assuming that the index tree has h levels in total.

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

Similarity Score

N
um

be
r

of
 d

oc
um

en
ts

0 0.02 0.04 0.06 0.08
0

100

200

300

400

500

Similarity Score

N
um

be
r

of
 d

oc
um

en
ts

a b

Fig. 5 Distribution of similarity score when a single keyword in a query vector with BMTS.
(a) For keyword “network”. (b) For keyword “search” (From [39])

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 205

−0.2 −0.1 0 0.1 0.2
0

20

40

60

80

100
a b

Similarity score

N
um

be
r

of
 d

oc
um

en
ts

−0.1 −0.05 0 0.05 0.1 0.15
0

20

40

60

80

100

Similarity score

N
um

be
r

of
 d

oc
um

en
ts

Fig. 6 Obfuscation to distribution of similarity score for keyword “network” with different
standard deviations in EMTS. (a) σ = 0.05. (b) σ = 0.03 (From [39])

In BMTS, index and query confidentiality can be well protected by the secure
inner product technique. Due to the non-deterministic property of the encryption
method, the trapdoor unlinkability can be preserved similar to [10]. As assumed in
the defined known background model, the cloud server may have the knowledge
of the TF distributions, or normalized ones of some sensitive keywords from a
known comparable dataset. It is worth noting that these distributions are keyword
specific, as shown in Fig. 5.5 Therefore, to further prevent this sensitive information
from being disclosed to the server, the authors insert phantom terms into the query
vector in EMTS so as to obfuscate the final similarity scores while maintaining
effective search functionalities, as shown in Fig. 6. The larger σ is selected, the
better the TF distribution can be protected. This technique can achieve the same
privacy preserving functionality as MRSE, and the selection of σ reflects the user’s
preference for privacy preservation or search accuracy. On the other hand, this
query-side randomization technique significantly differs from [10] in the sense
that randomization in [10] is applied to the index vector and is not possible to be
calibrated by users as an effective privacy-preserving parameter.

Efficient Tree-Based Search Algorithm

In database community, query process could complete in logarithmic time by using
B-tree, B+-tree, etc. These tree-based structures are not only used in the plaintext
database search, but also can be used in the encrypted database scenario [30] to
realise efficient range query. Nevertheless, they are not applicable to text search. The
similarity score is a dynamic value depending on the query and has to be evaluated

5The background dataset is collected from the recent 10 years’ IEEE INFOCOM publications.

206 W. Sun et al.

in the runtime, which makes the fixed tree structure, such as B-tree or B+-tree, not
suitable here. Inverted index [31] is the most efficient and well-developed index
structure which is widely used in the plaintext information retrieval community.
In the literature, however, a few works [15, 40, 43, 49] employ this technique to
design efficient search algorithm but only for single keyword query. Sun et al.
propose a tree-based search algorithm, which is adapted from multi-dimensional
B-tree (MDB-tree) [33] based multi-dimensional algorithm (MD-algorithm) [32],
to enable efficient multi-keyword ranked search.

The MD-algorithm is used to find the k-best matches in a database that is
structured as an MDB-tree, as shown in Fig. 7. Each attribute domain in the database
constitutes one level of the MDB-tree and each attribute in that domain is assigned
an attribute value. All the attributes sharing the same value in the upper domain
forms a child node. As such, a set of objects is allowed to be indexed in one data
structure. An important search parameter, the prediction threshold value P̂i for each
level i, is obtained from the maximum attribute value Pi at each level, for example,
in Fig. 7, P̂i = Pi = 1.0.

In a depth-first manner, MD-algorithm starts from the root node with a recursive
procedure upon this tree. Specifically, search process selects the unused maximum
attribute value when it enters a node, and based on P̂i’s below this level, predicts
the maximum possible final score to be obtained. The criteria for node selection
is that if this predicted final score is less than or equal to the minimum score of
the top-k objects which have been selected, search process returns to the parent

0.50.4

0.3 0.40.0 0.7

A

1.0 0.9

B

C E F H I J K

G

0.0 0.5 1.0

0.5 1.0 0.0 0.7 0.7 0.4 0.6

D

Level 1

Level 2

Level 3

Fig. 7 Illustration of MD-algorithm on MDB-tree (From [39])

node, otherwise, it goes down to the child node at the next level. This procedure is
executed recursively until the objects with top-k scores are selected.

The search can be done very efficiently due to the relatively accurate final score
prediction, and thus only part of the objects in the tree are accessed. Figure 7 shows

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 207

an example that, when k = 3, the set of objects, E, K, and J, are returned to the user
and the cross signs in the figure indicate that it is not necessary to access the nodes
below. More details of the MD-algorithm and MDB-tree can be found in [32].

The MD-algorithm is originally designed for plaintext database search. In the
case of privacy-preserving similarity-based multi-keyword ranked text search, it
cannot be applied in a straightforward manner. Instead of a numerical “attribute
value” for each attribute in the MDB-tree, the index tree structure has to be built on
vectors. Another remarkable difference between the proposed search algorithm and
MD-algorithm is that it is not possible to set P̂i to Pi as running the MD-algorithm
in database scenario, since Pi varies for queries and has to be securely evaluated in
the runtime.

Search Efficiency Improvements

During the evaluation of the MD-algorithm on the proposed secure index tree, three
important efficiency-improving factors are identified by the authors. Next, we will
briefly elaborate on those observations.

1. Impact of Prediction Threshold Value: By observation, they found that the
smaller the predication threshold value, the faster the search algorithm is
terminated, which means the search process can be terminated earlier without
going into unnecessary nodes. As such, at each level, P̂i should decreasingly
approach Pi as close as possible.

5 10 15 20 25 30 35
0

20

40

60

80

100

120

Number of documents (× 102)

S
ea

rc
h

tim
e

(m
s)

Baseline
Strategy 1
Strategy 1 + Strategy 2
Strategy 1 + Strategy 2 + Strategy 3

Fig. 8 Comparison of search efficiency with different efficiency-improving strategies (From [39])

208 W. Sun et al.

2. Impact of Intended Keyword Position: Another observed efficiency-improving
factor is that the search efficiency is significantly dependent on the position of the
intended keywords on the index tree. Indeed, people usually complete a search
with a query only consisting of a few keywords [1], which is different from
using the MD-algorithm in database scenario. Typically, to find out the object
of interest, all the attributes are utilized to query the database. It is apparently
inefficient since the search process needs to go to the bottom level of the index
tree where the intended attribute resides.

3. Impact of Index Vector Clustering: The last search efficiency related obser-
vation is that “similar” vector index could be clustered together to reduce the
number of accessed nodes in the index tree at the expense of lower search
precision.

Based the these key observations, the authors propose the corresponding effective
strategies to improve the practical search efficiency with vector indexes while not
introducing new privacy vulnerabilities. Compared with the original MD-algorithm,
the experimental result6 shows the much more improved search efficiency in
Fig. 8.7 Furthermore, Fig. 9a shows the search time for BMTS and EMTS with the
proposed efficiency-improving strategies, compared with [10] and baseline search
with respect to the size of document set. Due to the proposed search algorithm and
tree-based index structure, the baseline search is far efficient than [10]. Note that the
time cost of BMTS and EMTS is more efficient than [10] and the baseline search.
Besides, the two proposed schemes enjoy almost the same and nearly constant
search time. Figure 9b shows that the proposed secure search schemes are still
extremely efficient in the case of more documents are required to be returned.

5 10 15 20 25 30 35
0

50

100

150

200

250

300

a b
350

S
ea

rc
h

tim
e

(m
s)

Cao et al.
Baseline
BMTS
EMTS

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Number of retrieved documents

S
ea

rc
h

tim
e

(m
s) Cao et al.

Baseline
BMTS
EMTS

Number of documents (× 102)

Fig. 9 Comparison of search efficiency with the same 10 keywords of interest. (a) For the different
size of document set. (b) For the different number of retrieved documents (From [39])

6All the experimental results in [39] are obtained from implementation of the proposed secure
search system using JAVA on a Linux Server with Intel Core i3 Processor 3.3 GHz.
7The baseline search is with respect to the original MD-algorithm. The strategies 1 is proposed
from the observation 1. Likewise, the strategy 2 is from the observation 2 and the strategy 3 from
the observation 3.

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 209

5 Conclusion

With the advent of cloud computing, more and more sensitive data are outsourced
to the cloud server to reduce the management cost and enjoy the ubiquitous access.
However, this novel computing paradigm introduces serious privacy challenges in
that users’ data are no longer locally possessed but stored on the remote server
which belongs to a different trust domain compared with the data users’. In this
chapter, we focus on the privacy concerns in the secure search function performed
over encrypted cloud data. We first provide a brief introduction to the background
knowledge of encrypted data search techniques that have been proposed in the
literature and dedicated to address the secure search problem in the computation
outsourcing model. Then we elaborate on a state-of-the-art secure search scheme in
the text search scenario, and show that they can achieve flexible/expressive search
functionalities, i.e., multi-keyword ranked search. In addition, the same search
accuracy as the plaintext information retrieval can be realised using the state-of-
the-art similarity measure while search privacy is well protected. Finally, with the
proposed search algorithm, the discussed secure search system is efficient enough
to be deployed in practice.

While continued research is necessary to further enrich the search function-
ality and improve the efficiency and scalability of search schemes, another very
interesting direction is on virtualization security that tries to secure the execution
environment (i.e., virtual machines) in the cloud server. This will require a slight
change in the security model – instead of an honest-but-curious server model
which does not trust the server, we may choose to place minimum trust on the
server, for example, trust the bare hardware on the server, and design the secure
operating system to protect the virtual machine against the software-based attacks,
be it from other virtual machines running on the same physical machine or the
hosting machine’s operating system. We argue that the data should be stored in
the cloud in the encrypted form. However, after they are loaded to the users’ secure
execution environment, they can be in the plaintext form in order to enable effective
computation, such as search. Research along this line includes [5, 24, 41, 50] and it
aims to provide a more general solution to the secure computation on the untrusted
cloud server problem. We believe both research directions are interesting and call
for more effort from the research community.

Acknowledgments This work was supported in part by the NSFC 61272457, the FRFCU
K50511010001, the PCSIRT 1078, the National 111 Project B08038, and the U.S. NSF grant
CNS-1217889.

210 W. Sun et al.

References

1. Keyword and search engines statistics. http://www.keyworddiscovery.com/keyword-stats.
html?date=2013-01-01 (2013)

2. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: Proceed-
ings of the 5th ACM Symposium on Information, Computer and Communications Security,
pp. 48–59. ACM (2010)

3. Atallah, M.J., Li, J.: Secure outsourcing of sequence comparisons. International Journal of
Information Security 4(4), 277–287 (2005)

4. Attrapadung, N., Libert, B.: Functional encryption for inner product: Achieving constant-size
ciphertexts with adaptive security or support for negation. In: Public Key Cryptography–PKC
2010, pp. 384–402. Springer (2010)

5. Azab, A.M., Ning, P., Zhang, X.: Sice: a hardware-level strongly isolated computing environ-
ment for x86 multi-core platforms. In: Proceedings of the 18th ACM conference on Computer
and communications security, pp. 375–388. ACM (2011)

6. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-user settings.
In: Information Security Practice and Experience, pp. 71–85. Springer (2008)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword
search. In: Advances in Cryptology-Eurocrypt 2004, pp. 506–522. Springer (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in
Cryptology – CRYPTO 2001, pp. 213–229. Springer (2001)

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Proceed-
ings of the 4th conference on Theory of cryptography, pp. 535–554. Springer-Verlag (2007)

10. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search
over encrypted cloud data. In: Proceedings of IEEE INFOCOM, pp. 829–837 (2011)

11. Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted
data. In: Applied Cryptography and Network Security, pp. 442–455. Springer (2005)

12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
the ACM 45(6), 965–981 (1998)

13. Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword search
over encrypted data. In: Distributed Computing Systems Workshops (ICDCSW), 2011 31st
International Conference on, pp. 273–281. IEEE (2011)

14. Comer, D.: Ubiquitous b-tree. ACM computing surveys 11(2), 121–137 (1979)
15. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:

improved definitions and efficient constructions. In: Proceedings of the 13th ACM conference
on Computer and communications security, pp. 79–88. ACM (2006)

16. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)
17. Goh, E.J.: Secure indexes. Cryptology ePrint Archive. http://eprint.iacr.org/2003/216 (2003)
18. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data.

In: ACNS 04: 2nd International Conference on Applied Cryptography and Network Security,
pp. 31–45. Springer-Verlag (2004)

19. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In:
Theory of Cryptography, pp. 264–282. Springer (2005)

20. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its
extension to a multi-user system. In: Pairing-Based Cryptography–Pairing 2007, pp. 2–22.
Springer (2007)

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: the 47th
Annual IEEE Symposium on Foundations of Computer Science, pp. 239–248. IEEE (2006)

22. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Proceedings of the 2012 ACM conference on Computer and communications security,
pp. 965–976. ACM (2012)

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: Advances in Cryptology–EUROCRYPT 2008, pp. 146–162.
Springer (2008)

http://www.keyworddiscovery.com/keyword-stats.html?date=2013-01-01
http://www.keyworddiscovery.com/keyword-stats.html?date=2013-01-01
http://eprint.iacr.org/2003/216

Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing 211

24. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without
the virtualization. In: ACM SIGARCH Computer Architecture News, vol. 38, pp. 350–361.
ACM (2010)

25. Krebs, B.: Payment processor breach may be largest ever. http://voices.washingtonpost.com/
securityfix/2009/01/payment_processor_breach_may_b.html (2009)

26. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted
data in cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–5. IEEE (2010)

27. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted data
in cloud computing. In: Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, pp. 383–392. IEEE (2011)

28. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel
and Distributed Systems 24(1), 131–143 (2013)

29. Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage data with
small index. In: Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International
Conference on, pp. 269–273. IEEE (2011)

30. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In: 19th Annual
Network and Distributed System Security Symposium (NDSS Symposium’12) (2012)

31. NIST: NIST’s dictionary of algorithms and data structures: inverted index. http://xlinux.nist.
gov/dads/HTML/invertedIndex.html

32. Ondreička, M., Pokornỳ, J.: Extending fagin’s algorithm for more users based on multidi-
mensional b-tree. In: Advances in Databases and Information Systems, pp. 199–214. Springer
(2008)

33. Scheuermann, P., Ouksel, M.: Multidimensional b-trees for associative searching in database
systems. Information systems 7(2), 123–137 (1982)

34. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Theory of
Cryptography, pp. 457–473. Springer (2009)

35. Sheridan, J., Cooper, C.: Defending the cloud. http://www.reactionpenetrationtesting.co.uk/
Defending%20the%20Cloud%20v1.0.pdf (2012)

36. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-dimensional range query over
encrypted data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 350–364
(2007)

37. Slocum, Z.: Your google docs: Soon in search results? http://news.cnet.com/8301-17939_109-
1035713%207-2.html (2009)

38. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

39. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. In: Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications security, pp. 71–82.
ACM (2013)

40. Swaminathan, A., Mao, Y., Su, G.M., Gou, H., Varna, A.L., He, S., Wu, M., Oard, D.W.:
Confidentiality-preserving rank-ordered search. In: Proceedings of the 2007 ACM Workshop
on Storage Security and Survivability, pp. 7–12 (2007)

41. Szefer, J., Keller, E., Lee, R.B., Rexford, J.: Eliminating the hypervisor attack surface
for a more secure cloud. In: Proceedings of the 18th ACM conference on Computer and
communications security, pp. 401–412. ACM (2011)

42. Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient
searchable symmetric encryption. In: Secure Data Management, pp. 87–100. Springer (2010)

43. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE Transactions on Parallel and Distributed Systems 23(8),
1467–1479 (2012)

44. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in cloud
computing. In: INFOCOM, 2011 Proceedings IEEE, pp. 820–828. IEEE (2011)

http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://xlinux.nist.gov/dads/HTML/invertedIndex.html
http://xlinux.nist.gov/dads/HTML/invertedIndex.html
http://www.reactionpenetrationtesting.co.uk/Defending%20the%20Cloud%20v1.0.pdf
http://www.reactionpenetrationtesting.co.uk/Defending%20the%20Cloud%20v1.0.pdf
http://news.cnet.com/8301-17939_109-1035713%207-2.html
http://news.cnet.com/8301-17939_109-1035713%207-2.html

212 W. Sun et al.

45. Witten, I.H., Moffat, A., Bell, T.C.: Managing gigabytes: Compressing and indexing docu-
ments and images. Morgan Kaufmann Publishing, San Francisco, May 1999

46. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure knn computation on encrypted
databases. In: Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of data, pp. 139–152. ACM (2009)

47. Yang, Y., Lu, H., Weng, J.: Multi-user private keyword search for cloud computing. In: Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference
on, pp. 264–271. IEEE (2011)

48. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2010)

49. Zerr, S., Olmedilla, D., Nejdl, W., Siberski, W.: Zerber+ r: Top-k retrieval from a confidential
index. In: Proceedings of the 12th International Conference on Extending Database Technol-
ogy: Advances in Database Technology, pp. 439–449. ACM (2009)

50. Zhang, N., Li, M., Lou, W., Hou, Y.T.: Mushi: Toward multiple level security cloud with
strong hardware level isolation. In: MILITARY COMMUNICATIONS CONFERENCE, 2012-
MILCOM 2012, pp. 1–6. IEEE (2012)

Towards Data Confidentiality
and a Vulnerability Analysis Framework
for Cloud Computing

Kerim Y. Oktay, Mahadevan Gomathisankaran, Murat Kantarcioglu,
Sharad Mehrotra, and Anoop Singhal

Abstract This chapter explores two related challenges in the context of secure
processing in cloud computing. The first is the concern of “loss of control” that
results from outsourcing data and computation to the clouds. While loss of control
has multiple manifestations, the chapter focusses on the potential loss of data
privacy and confidentiality when cloud providers are untrusted. Instead of using a
well studied (but still unsolved) approach of encrypting data when outsourcing it and
computing on the encrypted domain, the paper advocates risk-based processing over
a hybrid cloud architecture as a possible solution. Hybrid clouds are a composition
of two or more distinct cloud infrastructures (private, community, or public) that
remain unique entities, but are bound together by standardized or proprietary
technology that enables data and application portability. Hybrid clouds offer an
opportunity to selectively outsource data and computation based on the level of
sensitivity involved. The paper postulates a risk-aware approach to partitioning
computation over hybrid clouds that provides an abstraction to address secure
cloud data processing in a variety of system and application contexts. Solutions
to the workload partitioning problem are sketched in two example settings such as

K.Y. Oktay (�) • S. Mehrotra
Department of Computer Science, University of California, Irvine, CA, USA
e-mail: koktay@uci.edu; sharad@ics.uci.edu

M. Gomathisankaran
Department of Computer Science and Engineering, University of North Texas,
Denton, TX, USA
e-mail: mgomathi@unt.edu

M. Kantarcioglu
Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
e-mail: muratk@utdallas.edu

A. Singhal
Computer Systems Division, National Institute of Standards and Technology,
Gaithersburg, MD, USA
e-mail: anoop.singhal@nist.gov

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__10,
© Springer Science+Business Media New York 2014

213

mailto:koktay@uci.edu
mailto:sharad@ics.uci.edu
mailto:mgomathi@unt.edu
mailto:muratk@utdallas.edu
mailto:anoop.singhal@nist.gov

214 K.Y. Oktay et al.

partitioning database workloads and distributing map reduce task across public and
private machines. The paper also explores a related challenge of developing vul-
nerability assessment frameworks for cloud computing environments. Preliminary
work on an ontology driven framework for vulnerability assessment is described.
The proposed framework addresses the challenges introduced by the complexity
of running software on the cloud environment where the exact infrastructure used
is not known or constrained prior to execution and applications/services could be
composed to form additional services.

1 Introduction

Fueled by the advances in virtualization and high-speed network technologies,
cloud computing is emerging as a dominant computing paradigm for the future.
Cloud computing can roughly be summarized as “X as a service” where X
could be a virtualized infrastructure (e.g., computing and/or storage), a platform
(e.g., OS, programming language execution environment, databases, web servers),
software applications (e.g., Google apps), a service, or a test environment, etc. A
distinguishing aspect of cloud computing is the utility computing model (aka pay-
as-you-go model) where users get billed for the computers, storage, or any resources
based on their usage with no up-front costs of purchasing the hardware/software
or of managing the IT infrastructure. The cloud provides an illusion of limitless
resources which one can tap into in times of need, limited only by the amount one
wishes to spend on renting the resources.

Despite numerous benefits, organizations, especially those that deal with poten-
tially sensitive data (e.g., business secrets, sensitive client information such as
credit card and social security numbers, medical records), hesitate to embrace the
cloud model completely. One of the main impediments is the sense of “loss of
control” over ones data wherein the end-users (clients) cannot restrict the access
to potentially sensitive data by other entities, whether they be other tenants to
the common cloud resources or privileged insiders who have access to the cloud
infrastructure. The key operative issue here is the notion of trust. Loss of control, in
itself, is not as much of an issue if clients/users could fully trust the service provider.
In a world where service providers could be located anywhere, under varying legal
jurisdictions; where privacy and confidentiality of ones data is subject to policies
and laws that are at best (or under some circumstances) ambiguous; where policy
compliance is virtually impossible to check, and the threat of “insider attacks” is
very real – trust is a difficult property to achieve. Loss of control over resources
(by migrating to the cloud) coupled with lack of trust (in the service provider)
poses numerous concerns about data integrity (will service provider serve my data
correctly? Can my data get corrupted?), availability (will I have access to my data
and service at any time?), security, privacy and confidentiality (will sensitive data
remain confidential? Will my data be vulnerable to misuse? By other tenants? By
service provider?) to name a few.

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 215

In this position paper, we focus on two complementary challenges in the context
of cloud computing: First, we explore the challenge of privacy and confidentiality
aspects of data processing in public cloud environments. An obvious approach to
achieving confidentiality and privacy is to appropriately encrypt data prior to storing
it on the cloud. This way, data remains secure against all types of attacks, whether
they be due to using shared systems & resources also accessible to others, insider
attacks, or data mining attacks leading to information leakage. While encrypting
data mitigates many of the confidentiality concerns, it poses a new challenge – how
does one continue to process encrypted data in the cloud? Over the past few decades,
numerous cryptographic approaches as well as information hiding techniques have
been developed to support basic computations over encrypted data [13–15]. For
instance, a variety of semantically secure searchable encryption techniques that
can support various forms of keyword search as well as range search techniques
have been proposed. Likewise, work in the area of database as a service [16] has
explored support for SQL style queries with selections/projections/joins etc. Many
such approaches offer sliding scale confidentiality wherein higher confidentiality
can be achieved, albeit extra overheads. While significant progress has been made
in designing solutions that offer viable approaches when the computation to be
performed on encrypted data is suitably constrained, a general solution that is
efficient enough to be of practical use is, however, seems unlikely to emerge in
the near future.

To address privacy and confidentiality challenge, instead of opting for solutions
that completely eliminate the possibility of attacks (e.g., by devising appropriate
mechanisms to compute on the encrypted representations directly), we promote an
alternate/complementary risk-based view to secure database query processing that
instead of preventing loss of sensitive data, controls how data is stored and processed
in the cloud so as to limit the exposure of sensitive data on public cloud. We focus
the discussion to our ongoing work in the Radicle Project (http://radicle.ics.uci.edu)
on risk-based computing in hybrid cloud setting wherein in-house systems may
offload part of their work during peak demand to the public cloud infrastructures
(e.g., Amazon EC2, Microsoft Azure). Such a hybrid cloud creates a mixed security
environment for data processing – while organizations can control (to a degree)
security on their own infrastructure, the public infrastructure is susceptible to myriad
of security concerns, including information leakage through “excessive privilege
abuse” (aka insider attack which has been identified as amongst most important
database security threat by numerous practitioners). A risk-based approach controls
what data and computation is offloaded to the public cloud and how such data is
represented, in order to control the risk of data exposure. Different ways to steer data
through the public and private clouds exhibit different levels of risks and expose a
tradeoff between exposure risks and performance. Given such a tradeoff, the goal
of the risk aware computing changes from purely attempting to minimize costs (and
hence maximize performance) to that of achieving a balance between performance
and sensitive data disclosure risk.

Developing such a risk-based strategy opens multiple challenges. First and
foremost, given different ways in which data can be partitioned, represented

http://radicle.ics.uci.edu

216 K.Y. Oktay et al.

(e.g., in plain text, encrypted using searchable encryption techniques, deterministic
encryption, non-deterministic encryption), exposed at the public machines for
different periods of times, and different levels of trust a user may have in the public
infrastructure, we need principled ways of assessing risk of data loss with the diverse
choices. Given the risk model, the next challenge is to model the tradeoff problem
as a multi-criteria optimization that achieves a balance between performance and
exposure risk. Two specific settings of such multi-criteria problems can be (a)
optimize for performance while ensuring that exposure risks are constrained, or
alternatively, (b) constrain the additional overhead of the strategy, while minimizing
the risk of data loss. Solution to such a multi-criteria optimization will allow us
to determine how data should be stored and computation partitioned such that
the proposed system maintains the performance while limiting/minimizing loss of
sensitive data.

The second major challenge we address in the paper is that of assessing security
of software services on clouds. Security on the clouds (e.g., from cyber attacks)
depends upon the vulnerability of the infrastructure, platforms, and services. In
many cloud-based solutions, the platform or the infrastructure on which software
may run is now known or guaranteed a priori. Furthermore, the cloud and service
oriented architectures (SoA) support service level compositions, whereby new
services can be created rapidly by composing existing services. Vulnerability
assessment in such environments opens new challenges since security of the
software service must be assured regardless of the underlying infrastructure or
platform and must be tested across diverse service compositions requiring a large
number of combinations.

The outline of the rest of the paper is as follows: the paper first focuses on the
privacy and confidentiality challenge. In Sect. 2, we begin by further discussing the
hybrid cloud model highlighting the challenges in developing a risk-based approach
for data processing in such an environment. Section 3 describes preliminary ideas
on risk-based data processing in hybrid clouds. In particular, we postulate the
workload partitioning problem that explore the tradeoff between risks and exposure.
We further illustrate a solution to the partitioning problem for two cases of hybrid
cloud: first is the task of assigning queries between private and public machines in
ways that minimize either performance overhead or risk, and the second considers
distributing workloads consisting of map-reduce jobs in hybrid clouds. We then shift
our attention to vulnerability modeling for cloud environments in Sect. 4. Then, we
describe our ongoing work on developing the Vulnerability Assessment framework
for Cloud Computing (VULCAN). Finally, we conclude the paper in Sect. 5.

2 Hybrid Cloud

A hybrid cloud is a composition of two or more distinct cloud infrastructures
(private, community, or public) that remain unique entities, but are bound together
by standardized or proprietary technology that enables data and application porta-
bility [5]. The emergence of the hybrid cloud paradigm has allowed end-users to

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 217

seamlessly integrate their in-house computing resources with public cloud services
and construct potent, secure and economical data processing solutions. A growing
number of organizations have turned to such a hybrid cloud model [1,2] since they
offer flexibility on the tasks that can be offloaded to public clouds thereby offering
the advantages of increased throughput, reduced operational cost while maintaining
high levels of security.

A risk-based data processing approach explores how risk of information exposure
can be controlled in hybrid clouds where organizational data (both sensitive and
non-sensitive) and computation spans both (relatively) secure as well as non-secure
(public) nodes. The setting is reminiscent of the previous work on Database as
a Service [11] in the data management literature in which the data is stored on
the server side in an encrypted form and query processing is done on encrypted
domain. When processing could not continue on the encrypted domain, the data is
transferred to the secure client, which could then decrypt the data and continue the
computation. The goal in such processing is to minimize the client side work, while
simultaneously minimizing data exposure. In our previous work [11], we outlined
how an SQL query can be split to be executed partly on the server and partly on the
client to compute the final answer.

In the cloud setting, however, there are many fundamental differences.

• Unlike DAS, where the resources were assumed to be very limited on the client-
side, in the cloud setting organizations may actually possess significant resources
that meets majority of their storage and query processing needs. For instance, in
the cloud setting data may only be partially outsourced, e.g., only non-sensitive
part of the data may be kept on the cloud. Also, it is only at peak query loads that
the computation needs to be offloaded to the cloud. This has implications from
the security perspective since much of the processing involving sensitive data can
be done in the private side, e.g., if query primarily touches sensitive data, it could
be executed on the private side.

• In DAS, since the goal was to fully outsource the data and computation, the
focus of the solutions was on devising mechanism to compute on the encrypted
representation (even though such techniques may incur significant overhead). In
contrast, since in the hybrid cloud environments, since local machines may have
significant computational capabilities, solutions that incur limited amount of data
exposure of sensitive data (possibly at a significant performance gain) become
attractive.

• While DAS work has primarily dealt with database query workload (and
text search [14]), in a cloud setting, we may be interested in more general
computation mechanisms (i.e. not only database workloads). For instance, map-
reduce (MR) frameworks are used widely for large-scale data analysis in the
cloud. We may, thus, be interested in secure execution of MR jobs in the context
of hybrid clouds.

While there are significant new challenges and opportunities in secure processing
of data in cloud environments, the techniques for query processing/search in mixed
security environments developed in the literature to support the DAS model (e.g.,
techniques for various types of search over encrypted data, techniques to limit data

218 K.Y. Oktay et al.

exposure by splitting computation between public and private sides, cooperatively
implementing database operators/search in ways that limit exposure of cleartext at
the public-side, etc.) provide a solid foundation over which risk-aware processing
in hybrid clouds can be explored. In the following section, build towards such a
risk-aware processing architecture for hybrid clouds.

3 Risk Aware Data Processing Over Hybrid Clouds

In our discussion, we will differentiate between three distinct hybrid cloud settings
that target different usage scenarios and pose different tradeoffs:

• Outsourcing scenario, where an organization relies on a public cloud to fulfill
their IT requirements, and uses their limited private cloud to perform supplemen-
tary tasks such as filtering incorrect results or decrypting encrypted results. This
is similar to the DAS model studied in the literature.

• Cloudbursting setting, where an organization uses their private cloud to develop,
test and deploy applications, and depends on a public cloud to mitigate sudden
spikes of activity in an application that arise due to unforeseen circumstances.

• Fully Hybrid scenario, the companies consider the entire hybrid cloud as one big
cluster of machines and are willing to keep the load imbalance across the hybrid
cloud as little as possible in order to obtain the best performance. While achieving
this, they prefer to handle sensitive computations within the private cloud,
whereas the public side executes mostly the workload’s non-sensitive portion.

While specific techniques and solutions to achieve risk-aware processing in each
of the above depend upon the specific instantiation of the problem, fundamental to
each approach is the underlying challenge of workload and data partitioning. We
illustrate the workload partitioning challenge with following two examples.

Consider a sequence of MapReduce (MR) job. In MR, a programming model for
processing large data sets with a parallel, distributed algorithm on a cluster, input
files can be stored across hybrid cloud and MR jobs can be defined to run on both
public and private machines. The first challenge is then how to distribute files in
such a way that risk is limited. For instance, we may limit sensitive data exposure
and only store non-sensitive data on public machines. This, however, does not fully
address the problem, since during execution sensitive data may need to be shuffled
to the public side thereby posing exposure possibility. The goal then is to partition
the MR jobs in ways that such data distribution into file chunks as well as later
shuffling during execution does not cause unconstrained exposure.

As another example, consider now a data management workload with a set of
database queries which one would like to periodically execute with some timing
guarantees. The workload may be too large for a given private infrastructure and
the option might be to shift some queries to public side. Even within such a
architecture there may be multiple choices. Either shift entire query to public side

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 219

– of course, this necessitate the corresponding data for query execution to also be
shifted and stored on public side. Or alternatively, one could use DAS style query
operator implementation whereby the public and private sides split the task of query
execution cooperatively. In either case, the above leads to workload distribution
challenge that prevents unconstrained data exposure.

3.1 Criteria for Workload Distribution

Before we explore a risk-based framework for data processing in hybrid clouds,
we first identify the key criteria of importance in designing hybrid cloud solutions.
These design criteria will form the basis of postulating the risk-based strategy as
will become clear later.

Performance: Consider a workload W . Let the execution of W be distributed in
private and public side and the corresponding computations be denoted by Wpriv and
Wpub respectively. Note that the execution of Wpriv and Wpub together achieves W .
Further, let the dataset R needed for the workload W be partitioned as Rpub and Rpriv

which represents partitioning of data amongst public and private machines (note
that Rpub and Rpriv may not strictly correspond to a partitioning and may overlap).
The partitioning of data is such that Rpriv (Rpub) includes all the data needed by the
workload Wpriv (Wpub). The performance of an data processing architecture in hybrid
cloud is directly proportional to overall running time of W with given Wpub and
Wpriv. We use the notation ORunTime(W,Wpub) to express the performance factor.
Estimating the expected total running time depends upon variety of factors such
as characteristics of the workload W , control flow between Wpriv and Wpub (e.g.,
do they need to run sequentially or can be executed in parallel), the speeds of
machines/infrastructure, the network throughput in case data needs to be shuffled
between public and private machines, the underlying representation of data Rpub, etc.

Data Disclosure Risk: Risk(Rpub) estimates the risk of disclosing sensitive data
to a public cloud service provider based on the data outsourced to public cloud
or exposed during processing. Disclosure risks depend upon a variety of factors:
it is directly proportional to the number of sensitive data items that Rpub includes.
Larger the sensitive data items in Rpub, higher is the Risk(Rpub); it depends upon
the representation format (e.g., encryption level) used to store Rpub – using a less
secure encrpytion technique incurs higher risk; it could depend upon the duration of
time for which sensitive data is exposed in Rpub; it depends upon the vulnerability
of the public cloud against the outsider attacks – the more vulnerable the system,
the higher the exposure risk will be.

Resource Allocation Cost: Resource allocation cost, Pricing(Rpub,Wpub), is asso-
ciated with storing data on public infrastructure and processing taken place over
the public machines. This criterion measures the financial cost (in terms of $)

220 K.Y. Oktay et al.

engendered by the incorporation of some type of public cloud services into hybrid
cloud models. The cost can be classified into the following two broad categories:

• On-premise Costs: This category measures the cost incurred in acquiring and
maintaining a private cloud.

• Cloud Costs: This category can be further sub-divided as follows: (a) Elastic
costs: A user is charged only for the services they use (pay-as-you-use).
(b) Subscription costs: A user is charged a decided fee on a regular basis (fixed).

The financial cost of an end-user’s hybrid cloud model implementation is
dependent on several factors such as the data model/query language, storage
representation, etc. In general, the larger the Rpub and Wpub are, the higher the cost
will be.

The above three factors – performance, risks, and costs – provide the main criteria
along which different solutions of risk based processing in hybrid clouds can be
compared. It is not surprising that spectrum of possible solutions represent tradeoffs
between these factors. For instance, solutions that indiscriminately distribute work
to the public machines in an unconstrained way may optimize performance but they
will be suboptimal from the perspective of risks. Likewise, a solution that minimizes
risk by performing any operation that may leak sensitive data on private machines
may either suffer significantly from the performance perspective, or require a heavy
investment in private infrastructure to meet applications timeliness goals thus not
leveraging the advantages of the cloud based model.

A risk-based approach to hybrid cloud processing allows users to explore the
above tradeoffs in a principled manner thereby enabling users to effectively realize
their performance, security, and financial constraints. For instance, given an existing
private cloud, a user may specify the dollar costs they are willing to incur for
using public resources and the maximum disclosure risks they are willing to incur.
A risk-based approach may then attempt to optimize the performance given such
constraints specified by the user. An alternate formulation may be minimize the
disclosure risks given desirable performance and cost constraints (assuming a
feasible solution exists for such an optimization).

Two main issues in designing such a risk-based approach are: (a) identifying
metrics for the above three criteria (performance, risks, costs) in terms of parameters
that can be modified by the risk-based approach, e.g., workload distribution, data
partitioning, cost constraints for acquiring cloud services (and/or private machines)
a user may have, etc. (b) designing a principled approach to determine the optimal
instantiation of the parameters that meet the performance, cost and risk constraints
of the user.

Both of these issues pose significant challenges. Estimating factor such as cost
and performance is relatively easier in our view. For instance, the resource allocation
cost is contingent on the cloud vendor and type of services being commissioned and
existing models supported by various cloud vendors provide a good mechanism for
estimating such costs. Furthermore, a recent paper [41] has extended performance-
estimation mechanisms for SQL query processing to HIVE queries over Hadoop.
Such techniques provide a starting point for modeling workload performance. In

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 221

contrast, modeling risks due to data exposure given data representation seems
significantly more complex. In general, it may require us to model how useful is
the information to the adversary, what will it enable the adversary to do, and/or
model the loss to data owner (e.g., economic loss) as a result of information being
leaked. While such risk modeling represents an interesting question, we limit our
model to relatively simple metrics of rid such as the number of sensitive cells
exposed, the duration of such exposure [4] or a bit more complex analytical [6]
or entropy-based [7] techniques. We focus our discussion in the next section on
how the workload partitioning problem can be specified with the given metrics for
performance, risk, and costs. When we offer a concrete instantiation of the workload
distribution problem in the context of distributed database query workload, we will
show how these metrics can be computed in the context of the problem we study.

3.2 Workload Partitioning Problem (WPP)

WPP varies upon whether one aims to use hybrid cloud in cloudbursting, out-
sourcing or fully-hybrid setting. This paper states the formal definition of WPP for
each hybrid cloud model and provides an efficient dynamic programming oriented
solution to the one in fully-hybrid model.

Given the three factors – performance, risks, resource allocation costs, discussed
in the previous section, we can now formalize the workload partitioning problem
as a multi-criteria optimization problem that chooses the system parameters such as
workload and data partitioning so as to simultaneously optimize the three metrics.
We model the problem as a constrained optimization problem, wherein one of
the metrics is optimized while ensuring that the solution is feasible with respect
to the constraints specified by the user on the other metrics. In general, in a
WPP, a user may specify the three constraints: T IME_CONST , DISC_CONST
and PRA_CONST , where T IME_CONST corresponds to the maximum amount of
time that the workload W needs to be completed in, PRA_CONST acts as an upper
bound on the maximum allowable monetary cost that can be expended on storing
and processing data on a public cloud, and DISC_CONST denotes the maximum
permissible data disclosure risk that can be taken while storing the sensitive data on
public cloud. WPP can thus be specified as that of distributing a workload W (and
implicitly a dataset R) over a hybrid cloud deployment such that one of the three
factors is minimized subject to constraints on the remaining two. Let us next explore
the problem formulation for the three different cloud settings we had introduced
earlier:

WPP Definition for outsourcing model: Organizations using hybrid cloud in
outsourcing mode mostly rely on the public cloud, since their private resources are
very limited. In the context of risk aware data processing, the purpose of outsourcing
model is to push as much sensitive computation as possible to the private side while
meeting specified overall running time and monetary cost limit. Thereby, WPP in

222 K.Y. Oktay et al.

outsourcing setting can be defined as follows: Given a dataset R and a workload
W , WPP is an optimization problem whose goal is to find subsets Wpub ⊆W and
Rpub ⊆ R such that the total disclosure risk, Risk(Rpub), is minimized.

minimize Risk(Rpub)

subjectto (1) ORunT(W,Wpub)≤ T IME_CONST

(2) Pricing(Rpub,Wpub)≤ PRA_CONST

WPP Definition for cloudbursting model: In the cloudbursting model, the end-
user more likely wants to finish the given workload less than a speicified time limit
by paying the minimum cost. Also, while meeting these requirements, one may
want to formalize W PP as follows: Given a dataset R and a workload W , W PP is an
optimization problem whose goal is to find subsets Wpub⊆W and Rpub⊆R such that
the total monetary cost, Pricing(Rpub,Wpub), that arises to exetute W is minimized.

minimize Pricing(Rpub,Wpub)

subjectto (1) ORunT(W,Wpub)≤ T IME_CONST

(2) Risk(Rpub)≤ DISC_CONST

WPP Definition for fully hybrid model: In fully hybrid setting, as stated earlier,
the primary goal is to maximize the performance. Besides, the end-user may want
to put an upper limit on the disclosure risk and the monetary cost while distributing
the computation across the cluster. Given these criteria, WPP definition in can be
given as follows: Given a dataset R and a workload W , W PP can be modeled as an
optimization problem whose goal is to find subsets Wpub ⊆W and Rpub ⊆ R such
that the overall execution time of W is minimized.

minimize ORunT(W,Wpub)

subjectto (1) Risk(Rpub)≤ DISC_CONST

(2) Pricing(Rpub,Wpub)≤ PRA_CONST

WPP definition in each of these settings depends upon mechanisms to appro-
priately estimate the runtime, monetary costs, and risks associated with a given
workload/data partitioning. Below we specify a possible approach to how such
factors can be estimated.

Overall Workload Execution Time: It is denoted as ORunT(W,Wpub), as an
indicator of performance. Consequently, WPP variants either aim to minimize the
overall execution time of a given task workload W or try to keep it under a threshold.
The execution time of tasks in W over a hybrid cloud, given that tasks in Wpub are
executed on a public cloud can be represented as follows:

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 223

ORunT(W,Wpub) = max

⎧
⎪⎨

⎪⎩

∑
t∈Wpub

runTpub(t)

∑
t∈W−Wpub

runTpriv(t)

where, runTx(t) denotes the estimated running time of task t ∈ T at site x where
x is either a public (x = pub) or private (x = priv) cloud. The running time of a
task on public/private machines, in itself, depends upon the machine characteristics
and the task. Models for estimating these have been widely developed for database
workloads in the literature and more recently for HIVE queries in the context of
cluster computing [41]. We have further developed similar cost-estimation models
for SPARQL queries over RDF stores.

Data Disclosure Risk: The disclosure risk that is associated with storing the public
side partition of data, namely Rpub, is estimated as follows:

Risk(Rpub) = ∑
Ri∈Rpub,s

sens(Ri,s),

where sens(Ri,s) is the number of sensitive values contained in a data item Ri ∈
Rpub, which are stored on a public cloud. We are, of course, using a simple measure
– viz. number of sensitive data exposed – as a measure of risk in the above
formulation.

Resource Allocation Cost: It estimates the financial cost of utilizing public cloud
services as follows:

Pricing(Rpub,Wpub) = store(Rpub)+ ∑
t∈Wpub

freq(t)× proc(t),

where store(Rpub) represents the monetary cost of storing a subset Rpub ⊆ R on a
public cloud, freq(t) denotes the access frequency of task t ∈W , and proc(t) denotes
the monetary cost associated with processing t on a public cloud. Such monetary
costs for storing and executing tasks on the public cloud depend upon the pricing
models of current cloud vendors. In our experiments given later, we will use the
Amazon’s pricing model to compute such monetary costs.

3.3 WPP Solution for Fully Hybrid Setting

Above, we have discussed the WPP abstractly for various hybrid cloud settings.
To make the discussion concrete, in this section, we sketch a solution based on
dynamic programming for one such instantiation of the WPP problem. Specifically,
we consider a fully-hybrid cloud deployment which has to be used to compute
a workload of database queries. Furthermore, in the solution, we will make

224 K.Y. Oktay et al.

simplifying assumption that data is stored unencrypted both on the private and
public machines. Thus, exposure risks can be directly computed as the number of
sensitive data outsourced to the public machines. As we stated earlier, the WPP
in fully-hybrid deployment model attempts to find a subset of the given dataset and
workload that can be shipped to the public cloud. The W PP problem tries to achieve
this goal by aiming to minimize the total processing time of the workload across the
hybrid cloud under several constraints.

Nevertheless, WPP can be simplified to a more trivial version in which the
problem only attempts to find Wpub, since Rpub can be considered as being equivalent
to (

⋃
t∈Wpub

baseData(t)) where baseData(t) denotes the minimum set of data items

to execute task t accurately. In other words, any other solution R
′
that minimizes the

overall performance should be a superset of
⋃

t∈Wpub

baseData(t) and, yet, the solution
⋃

t∈Wpub

baseData(t) is the one with the least sensitive data exposure and monetary

cost. As a result, WPP can be considered to be a problem that aims to find the
subset of the query workload that minimizes the workload execution time without
violating the given constraints.

To represent W PP along with its inputs and constraints, we use the following
notation: W PP(W,PRA_CONST,DISC_CONST). We also assume that the query
workload, W , and the constraints, PRA_CONST and DISC_CONST are all given
beforehand.

Dynamic Programming Approach to Solve WPP

Given the exponential number of query workload subsets, we use a dynamic pro-
gramming approach to find the best one. We now present Algorithm 1 that produces
a set of queries Wpub as a solution to WPP(W,PRA_CONST,DISC_CONST).

Algorithm 1 uses a data structure pubW and frequently calls a method labeled as
checkConstr. The purpose of these constructs is as follows:

• pubW[i][j][k]: This data structure maintains the set of public side tasks for
W PP(Wi, j,k) where W i = {t1, t2, . . . , ti}. Given that the maximum admissible
monetary cost and the maximum disclosure risk are equal to j and k respectively,
this data structure stores the queries from amongst the first i tasks that are selected
to be processed over the public cloud so as to minimize the overall response time
of the first i tasks. Notice that pubW [i][j][k] ⊆W i.

• checkConstr(W
′
, j
′
,k
′
): This method returns whether monetary cost bound j

′

and disclosure risk limit k
′

are satisfied when the queries in W
′

are executed
on the public side. In particular, the method checks if store(

⋃

t∈W ′
baseData(t))+

∑
t∈W ′

(f req(t)× proc(t))≤ j
′

and sens(
⋃

t∈W ′
baseData(t))≤ k

′
.

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 225

To make it easily understandable for readers, we present the notion behind
our dynamic programming algorithm. Intuitively, W PP(W n,PRA_CONST,SENS_
CONST) can be generalized as WPP(W i, j,k). As the solution to this general
problem will be a subset of W i, there are two possible assignments for the last task
ti in W i. The task ti is either in the solution to WPP(W i, j,k) or is not. Therefore,
both cases should be investigated carefully. Before expanding on both cases, let us
illustrate how our algorithm works with an example. Assume that our workload W
consists of three tasks (i.e. W = {t1, t2, t3}) and WPP(W 3, j,k) needs to be solved.
The detailed information about these three queries is given below.

W proc(t) store(baseData(t)) sens(baseData(t))
t1 $10 $15 20
t2 $20 $10 10
t3 $15 $10 20

Before investigating the two different cases in further details, we need to check
whether assigning t3 to the public side violates any constraints (line 17). If we ship t3
to the public side, then the overall monetary cost and the overall disclosure risk will
be at least $25 and 20 sensitive cells respectively (assume that ∀1≤ i≤ 3 f req(i) =
1). If j < 25 or k < 20, then any solution considering t3 as a public side query will
not be a feasible one, and in turn WPP(W 3, j,k) = WPP(W 2, j,k) (line 30). Note
that, since executing any query on the private side does not cause a violation of any
constraints, this case essentially does not require a feasibility analysis. Now, we can
go into the details of each case.

Case 1: If t3 runs on the public side, then there will be more than 1 WPP
subproblems that need to be investigated. This is due to the fact that the possible
execution of t3 on the public side will bring at least $15 and at most $25 into
the overall monetary cost value. In terms of disclosure risk, the numbers will be
between 0 and 20 sensitive cells. The reason is that a portion of (or the entire)
baseData(t3) could already be partially included in the solution, Ws, to some
W PP(W2, j

′
,k
′
), and in turn storing baseData(t3) in addition to

⋃
t∈Ws

baseData(t)

may not bring as much monetary cost and disclosure risk as is represented in
the table above. Consequently, WPP(W 2, j

′
,k
′
) where j− 25≤ j

′ ≤ j− 15 and
k−20≤ k

′ ≤ k should be investigated in order to solve WPP(W 3, j,k) optimally
(lines 18–26). However, every candidate set of queries formed by taking the
union of t3 with the solution of WPP(W 2, j

′
,k
′
) should be tested to ensure that it

does not violate any constraint and it is the best solution in terms of performance
from amongst all solutions obtained in Case 1 (line 21). If it does produce the
best solution, it will be one of the solution candidates with the one coming from
Case 2 (lines 21–24).

Case 2: In case query t3 runs on the private side, then WPP(W 3, i, j) =
W PP(W2, i, j) (line 28).

226 K.Y. Oktay et al.

Algorithm 1 Dynamic programming()
Input: W , PRA_CONST , DISC_CONST Output: Wpub

1: initialize pubW [][][]
2: for i = 1→W.size do
3: procCost ← proc(ti)
4: totCost ← procCost + store(baseData(ti))
5: disc← sens(baseData(ti))
6: for j = 0→ PRA−CONST do
7: for k = 0→ DISC−CONST do
8: if i = 1 then
9: if checkConstr({t1}, j,k)

AND ORunT (W 1,W 1)< ORunT (W 1, /0) then
10: pubW [i][j][k]←{t1}
11: else
12: pubW [i][j][k]← /0
13: end if
14: else
15: pubCaseOT ← ∞
16: (j

′
,k
′
)← (NaN,NaN)

17: if checkConstr({ti}, j,k) then
18: for all j− totCost ≤ iC ≤ j− procCost do
19: for all k−disc≤ iD≤ k do
20: tmpSet ← pubW [i][iC][iD]∪qi

21: if checkConst(tmpSet, iC, iD) AND ORunT (W i, tmpSet) < pubCaseOT
then

22: pubCaseOT ← ORunT (W i, tmpSet)
23: (j

′
,k
′
)← (iC, iD)

24: end if
25: end for
26: end for
27: end if
28: privCaseOT ← ORunT (W i, pubW [i−1][j][k])
29: if privCaseOT ≤ pubCaseOT then
30: pubW [i][j][k]← pubW [i−1][j][k]
31: else
32: pubW [i][j][k]← pubW [i−1][j

′
][k
′
]∪{ti}

33: end if
34: end if
35: end for
36: end for
37: end for
38: return pubW [W.Size−1][PRA_CONST][DISC_CONST]

After computing the best solution candidate for both cases, our algorithm
compares the overall expected running times of both solutions and picks the
minimum one as the solution to WPP(W 3, j,k) (lines 29–33).

The algorithm above requires us to determine various costs (viz., disclosure,
monetary, and query execution) for a given workload W and the arbitrary data
partitions. We note that the incurred disclosure risk, in our model, is dependent only
on the public-side partition Rpub, which in turn is implicitly defined using the given

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 227

query workload. Determining query execution times and monetary costs, however,
depends upon the query workload. They can both be estimated as the sum of costs
of the individual queries.1

Experimental Results

For all our experiments, we have used the TPC-H benchmark with a scale factor 100
in our experiments. We used a query workload of 40 queries containing modified
versions of TPC-H queries Q1, Q3, Q6 and Q11. In particular, we do not perform
grouping and aggregate operations in any query because of the high complexity of
estimating overall I/O size for these types of operators in Hive. Further, we assumed
that each query was equally likely in the workload. The predicates in each of the
queries are randomly modified to vary the range (as mandated by TPC-H) of the
data that is accessed.

We first computed the running time of the query workload when all computations
are performed on the private cloud (Private). The experiments subsequently use
this case as a baseline to determine the performance of the dynamic programming
approach that was proposed earlier to solve the W PP problem.

30000

90000

150000

210000

270000

0 20 40 60 80 100

T
im

e
(s

ec
)

Sensitive data exposure level (%)

Resource Allocation Cost (50%)

Private
No-Sensitivity
1%-Sensitivity
5%-Sensitivity

10%-Sensitivity

 90000

 120000

 150000

 180000

 210000

0 20 40 60 80 100

T
im

e
(s

ec
)

Sensitive data exposure level (%)

Resource Allocation Cost (25%)

Private
No-Sensitivity
1%-Sensitivity
5%-Sensitivity

10%-Sensitivity

Fig. 1 Performance of the dynamic programming approach towards solving the WPP problem

Experiments for Dynamic Programming approach: The goal of these experi-
ments is to measure the performance of the dynamic programming approach that
was proposed earlier for solving the WPP. To perform these experiments, we varied
all parameters under consideration in the following way: (i) Resource allocation
cost: The resource allocation cost was varied between 25 and 50 % of the maximum
cost value that can occur along the workload execution. Given the above cost metric
definition, the maximum cost incurs when the dataset R is completely stored over

1Recent work has explored techniques such as shared scans in the context of executing queries
over MapReduce frameworks [8], which can reduce costs of query workloads. We, however, do
not consider such optimizations in developing our partitioning framework in this paper.

228 K.Y. Oktay et al.

public cloud and the entire query workload is executed on public machines. (ii)
We defined four different overall sensitivity levels as, No-Sensitivity (the entire
dataset is non-sensitive), 1 %-Sensitivity, 5 %-Sensitivity and 10 %-Sensitivity (1,
5 and 10 % of the tuples of the lineitem table are made sensitive). (iii) We defined
seven different sensitive data exposure levels as 0 % (none of the sensitive data is
exposed), 10, 25, 40, 50, 75 and 100 % (all of the defined sensitive data may be
exposed).

We then computed the overall performance of the query workload for different
combinations of these three parameters, the results of which are presented in Fig. 1.
One of the first observations that can be made from Fig. 1 is that when a user is
willing to take additional risks by storing more sensitive data on the public side,
they can gain a considerable speed-up in overall execution time (even greater than
50 %). On the other hand, Fig. 1 also shows that the monetary expenditure on
public side resources is substantially low even when a user takes additional risks
by storing increasing amounts of sensitive data on the public cloud (graph for 50 %
resource allocation cost show that even when more money is allowed to be spent on
public side resources the overall performance is relatively the same for these cases
suggesting that a budget of only about 50 % of PRA_CONST is sufficient to boost
the performance savings by upto 50 %).

Figure 1 also shows that when a user invests more capital towards resource
allocation, a considerable gain in overall workload performance (even greater than
50 %) can be achieved. This is expected since when more resources are allocated
on the public side, we are better able to exploit the parallelism that is afforded by a
hybrid cloud. Thus, the intuition that a hybrid cloud improves performance due to
greater use of inherent parallelism is justified. Finally, from Fig. 1, we also notice
that we can achieve a considerable improvement in query performance (≈50 %) for
a relatively low risk (≈40 %) and resource allocation cost (≈50 %).

3.4 Risk-Aware MapReduce Over Hybrid Clouds

As another example of risk-based data processing in hybrid clouds, let us consider
a mapreduce job which may access sensitive data. MR frameworks such as Hadoop
are widely popular for large scale data analysis [9, 10]. MR programming model
uses two functional operators in order to process data:

map : (k1,v1)→ list(k2,v2)

reduce : (k2, list(v2))→ list(v3)

MapReduce systems use a Distributed File System (DFS) as its underlying
storage mechanism (HDFS for Hadoop). A master node manages the entire file
system by keeping track of how blocks of files are distributed over all slave nodes.
On the other hand, a process running on every slave node manages the storage

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 229

infrastructure for that node. This architecture then uses the MR paradigm to process
data stored in the DFS in a parallelized fashion over a cluster of nodes. The MR
framework typically consists of a single master and several slaves. The master
is responsible for scheduling an MR job among the slaves while a slave node is
responsible for executing the given sub-task. By labeling one of the nodes as master
and the remaining ones as slave nodes, MR paradigm can be made to work on hybrid
clouds.

Map operations are usually distributed across a cluster by automatically partition-
ing the input to possibly equivalent sized blocks (in default 64 MB), which can then
be processed in parallel by separate machines. Once a map operation completes on
a slave, the intermediate key-value pairs are stored as partitions (hash partitioning)
in local disks on that slave. The intermediate partitions are then shuffled to different
nodes based on their partition-id to the right reducers.

In MR setting, sensitive data leakage can happen in multiple ways. It could
occur either while storing data over DFS or during MR processing. For instance,
when an input block that contains sensitive data is assigned to a map task running
on the public cloud, those sensitive data items will be directly exposed to the
public side. Alternatively, if a reducer whose input partition contains sensitive
information is assigned to public nodes then that sensitive information would be
leaked. Mechanisms to prevent disclosure by using encrytped computing while
interesting are not generally applicable.

Recent efforts have explored secure map reduce techniques on hybrid clouds.
One of the popular methods is Sedic, proposed in [12], that prevents leakage by
doing two things:

• Sensitivity aware data distribution that guarantees no sensitive data out to public
machines in turn the map tasks that touch sensitive data to be limited to private
side only, and

• Constraining reducers to run exclusively on the private side.

To overcome the performance degradation during the reduce phase, Sedic
attempts to use combiners to shift some of the work done during the reduce phase
to the public side without causing any exposure. Nonetheless, combiners cannot be
applied for many important data analysis tasks such as joining two tables. Therefore,
Sedic has performance limitations for the tasks that require reducers wherein cannot
be executed by using combiners.

One could potentially use a risk-based approach to resolve this performance
issue. Consider that the user is tolerant to some risks. In this case, some reducers
(specially ones with low level of sensitive data exposure can be assigned to public
machines). This will increase data exposure risks but will allow better performance
and load balancing across the hybrid cloud sides. Such a technique reflects a tradeoff
between risk and performance (i.e., load balancing of MR jobs). At one extreme,
there is Sedic which can be regarded as 0 % risk; and at another extreme, original
MR can may result in unconstrained leakage of sensitive data to public cloud for
performance purposes, namely full-exposure (100 % risk). However, we can limit

230 K.Y. Oktay et al.

the partitions that are assigned to public machines to achieve a performance vs. risk
tradeoff, similar to the one presented in the context of workload partitioning earlier
in the section.

While the risk-aware MR workload partitioning is relatively straightforward to
formalize, there are many complexities. For instance, in original MR setting, the
assignment of partition to reduce tasks is done when the job is initialized (deployed)
and reducer to machine assignment is done based on a policy such as FIFO.
Controlling disclosure in such a setup requires us to track what data is sensitive
in each map output partition so that we can then assign them to the right machines
based on given risk threshold (i.e., risk aware partition assignment). Such a tracking
should not be too costly so as to nullify the performance advantages obtained
by using public side for some reduce tasks. Another complexity is that if the
partitioning criteria used for assigning work to reducers is completely randomized
(as is generally the case for load balancing purposes), then the sensitive data may
also be randomly distributed across the partitions. In such a case, the number of
partitions that can be offloaded to the public side will be limited to that dictated by
the risk tolerance. Designing appropriate partitioning strategies and scheduling of
reduce task is a substantial challenge.

4 Software Vulnerability Assessment on the Cloud

Assessing the security of software services in clouds is challenging because of
vulnerabilities in the infrastructure, platform and applications. The recent denial
of service cyber attacks on the websites of banks clearly shows the importance of
security risk analysis for cloud computing. It was discovered that various cloud
services and public Web hosting services were infected by malware that has existed
for years. A security risk analysis framework can be used to discover existing
vulnerabilities and help organizations to protect themselves from cyber attacks.
Such a framework in the context of cloud computing opens several challenges.
Complexity arises since in the cloud setting, the platform or the infrastructure on
which the software can actually run may not be known or guaranteed. This implies
that the security of the software service must be assured regardless of the underlying
infrastructure or platform, requiring a large number of combinations. Another
common trend in Cloud and Service oriented Architecture (SoA) environments is
Service composition, whereby new services can be created rapidly by composing
existing services. Once again, the component services must be tested for security
levels on a large number of platform and infrastructure combinations. In this
section, we briefly describe a novel vulnerability assessment framework, entitled
VULCAN, for cloud computing systems. Our framework is designed to empower
analysts with the ability to answer questions such as “I developed this cloud product
as a service, is it vulnerable?”. Or “I want to host this software application in
this cloud environment, what security vulnerabilities I should watch out for?”.
One of VULCAN’s main design features is an easy-to-use interface that can be

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 231

used to assess security vulnerabilities of cloud-based system deployments. Another
important feature is extensibility. Different components of the VULCAN framework
(viz., Ontological vulnerability assessment, component, Ontology knowledge base,
semantic natural language processors, vulnerability class index, etc.) can be inte-
grated into any existing assessment frameworks (e.g., Metasploit [21]). Likewise,
any additional security vulnerability analysis components can be integrated into
VULCAN. VULCAN effectively supports:

• Software vulnerabilities modeling
• Analysis of vulnerabilities for cloud computing and mobile environments
• Software penetration tool environment
• Discovery of new vulnerabilities from the known one via the use of reasoning

tasks on our ontology knowledge base

Before we provide a technical overview of VULCAN components and design,
we briefly review the state of the art in vulnerability assessment techniques and
frameworks developed in the literature.

4.1 Vulnerability Assessment Techniques and Tools

Vulnerability Assessment Framework is a structure supporting a set of tools that
allows security practitioners to create and deploy exploits to find vulnerabilities.
For example, Mercury [17] is one such assessment framework for Android based
systems. Mercury is a framework that provides an interactive tool that allows
for dynamic interactions with the target applications running on a device. Using
Mercury, it is possible to realize some of the attacks illustrated in Vidas et al. [31]
survey of current android attacks against android security.

Previous research on vulnerability assessment has yielded some solutions such
as: the development of penetration testing tools, taxonomies and ontologies of
vulnerabilities, and assessment frameworks that allows integration of other com-
ponents. Steele’s [18] work on ontological vulnerability assessment shows that
taking an ontological approach results in improved identification of complex
vulnerabilities. Guo and Wang [22] work present an ontology-based approach
to model security vulnerabilities listed in Common Vulnerabilities and Expo-
sures (CVE), providing machine understandable CVE vulnerability knowledge and
reusable security vulnerabilities interoperability. The ontology for Vulnerability
Management (OVM) [23] captures important concepts and relations for describing
vulnerabilities in the context of software and system security. Paul et al. [24]
recommend the use of ontology to capture evolving requirements like in high
assurance systems. Wang et al. [25] propose an ontology-based approach to analyze
and assess the security posture for software products. Normally, given a knowledge
base of security vulnerability, you could retrieve currently known vulnerabilities of
given target. Xiao et al. [27] proposed a solution to overcome the tedious manual
work on extracting Access Control Policies (ACP) from Natural Language (NL)

232 K.Y. Oktay et al.

documents. They proposed a solution ‘Text2Policy’, to automatically extract ACPs
from NL software documents. This work is related to VULCAN which attempts to
automate ontology generation from vulnerability data sources. The state of the art
automatic ontology generation [29] defines its life cycle as a process composed of
Extraction (acquisition of information needed to generate the ontology), Analysis
(focuses on the matching of retrieved information and/or alignment of two or more
existing ontology, depending on the use case), Generation (Ontology generation),
Validation (Authenticate whether the generated ontology is correct or not), and
Evolution (adapt to the ontology changes). Our goal is to come up with techniques
to implement various components of the system for automatic ontology generation
and population from multiple sources of vulnerabilities. In Meunier’s [21] work,
their contribution is a survey of currently known attempts to classify vulnerabilities
and attacks. They illustrate how the current classifications fail to come up with one
unified classification schema of all vulnerabilities and attacks. A recommended
approach is to use ontology for vulnerabilities conceptualization. Because it is
capable of adopting all kinds of vulnerabilities regardless of which sub categories
they belong too. Our Ontology proves that the recommended approach to be
essentials when developing a vulnerability analysis assessment framework.

Amongst the most important techniques for vulnerability analysis is the concept
of attack graphs that depict Attack graphs [32] depict ways in which an adversary
exploits system vulnerabilities to achieve a desired state. Sheyner and Wing [33]
proposed a tool useful for generating and analyzing attack graphs. Our work on
VULCAN uses the ontology as a root node to discover known vulnerabilities
of the target system, then initializes the attack graph generation for it. Security
vulnerabilities are conceptualized in ways similar to Heberlein et al. [34] work on
establishing a taxonomic foundation for comparing and contrasting attack-graph
approaches.

4.2 Vulcan: Vulnerability Assessment Framework
for Cloud Computing

The main purpose of our assessment framework VULCAN is to provide complete
vulnerability assessment for the cloud environment. VULCAN is based on onto-
logical Vulnerability Assessment [18]. Using our Ontology Vulnerability Database
(OVDB) [19], suitably extended with definitions for cloud computing, we provide
two vital features to our framework. First feature, is the access to a conceptualized
set of current known vulnerabilities listed in the National Vulnerabilities Database
(NVD) [20]. The next feature, is using powerful ontology reasoning capabilities to
search our knowledge base of vulnerabilities. And also, the ability to discover new
vulnerabilities from the known existing one for a particular target system. Vulcan
embodies an automated process to create ontology knowledge base from NVD data
sources. To use most updated information on the current known vulnerabilities,

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 233

we automate the process of discovering, extracting them and populating our OVDB.
Our vulnerability data sources comes from different repositories and sources such
as NVD and web searches. Our framework allows us to do penetration testing as
well. We use an approach of mapping our OVDB with attack exploits database such
as Metasploit Auxiliary Module and Exploit Database [21]. Within the framework,
both vulnerabilities and their exploits are mapped together, this provides a complete
penetration testing environment.

Below we briefly discuss the different components of VULCAN depicted in the
figure below (VULCAN Architecture figure).

• NVD: National Vulnerability Database (NVD) is a SCAP [35] compliant
vulnerability database. The NVD database collects vulnerability information
from various interrelated vulnerability databases like CVE [36], CWE [37], CPE
[38], CVSS [39] etc. and compiles the information into a single database. A
typical vulnerability entry in the NVD database has the vulnerability identifier,
description of the vulnerability, list of software and their versions in which this
vulnerability is found in, vulnerability severity score (CVSS) etc. collected from
appropriate vulnerability databases. These vulnerability databases are industry
standard databases maintained by MITRE. VULCAN uses NVD as the source to
populate vulnerability information into the ontology knowledge base.

National Vulnerability
Database
(xml data)

Ontology Knowledge
Database

(xml/rdf data)

System Classifications
(specifications)

Indexer
(script)

Semantic Natural Language
Processor

(script)

Vulnerability List
(xml data)

Specific to the system to be
tested

Context rich system specific
index

Ontology population through extraction of Vulnerability data Cloud system componentes classified in to
IaaS, PaaS, SaaS, APIaas, etc

 Cloud System
(specifications)

Cloud System
Under Test

Vulnerabiliy Class Index
(xml data)

Attack Database
(Metasploit Modules)

Fig. 2 The Vulcan architecture

• OKB: Ontology Knowledge Base is the ontological database of vulnerability
information from the NVD database. NVD provides the vulnerability database in
a XML feed. We extract the vulnerability information from the XML feed and
populate ontology knowledge base. The vulnerability information in the NVD
XML feed is present in various tags. All the information in these tags are mapped
to various classes and properties defined in the ontology.

234 K.Y. Oktay et al.

• System Classifiers: System Classifiers are dynamic inputs provided to the
Indexer which will classify the classes in the ontology knowledge base. An
example classification includes various vendors in the cloud computing domain
and various software or hardware components in each service level of cloud
computing services. As shown in the figure above, cloud computing domain is
classified into IaaS, PaaS, SaaS etc. sub domains. In each of these domains we
will include software and hardware components used in popular cloud computing
vendors like Xen hypervisor in IaaS sub-domain, Google App Engine in PaaS
sub-domain and Salesforce CRM in SaaS sub-domain. We can provide the
system classifiers to whatever detail and depth we want to. The indexer takes
these system classifiers as input and crawls through the ontology knowledge base
and creates an index. The index consists of vulnerabilities grouped according to
the system classifiers provided by us. The changes in software or hardware in any
domain or vendor would require updating the system classifiers and re-indexing
the ontology knowledge base.

• Indexer: Indexer is the software responsible for crawling through the ontology
knowledge base to create an index. This index will in turn be used by the SNLP
module to search the ontology knowledge base depending on the user query.
The indexer is set to run every time the ontology knowledge base and/or system
classifiers change. The indexer identifies all the vulnerabilities that are related
to software or hardware components listed in the system classifiers and groupe
them accordingly in the index.

• Vulnerability Class Index: Vulnerability Class Index is the list of all vulnerabil-
ities grouped into the categories provided by the system classifiers. These groups
are called as “Vulnerability Classes”. Vulnerability classes will assist users to
search for vulnerabilities within a specific domain or sub-domain. At the top level
there is cloud computing class. Cloud computing has a sub class called PaaS and
the PaaS class has Xen hypervisor as it’s sub class. In the Xen class we have list
of vulnerabilities extracted by the indexer from the ontology knowledge base.

SNLP: Semantic Natural Language Processor enables users to search and
reason about vulnerabilities. It includes various sub components which are
capable of doing pattern matching, keyword search, and reason over properties
and relationships of the classes in the ontology knowledge base. SNLP takes
input from user and tries to understand what the user is asking for. Then based on
the input, it provides him a list of vulnerabilities for the requested product and/or
class. SNLP is capable of looking up vulnerabilities for the requested product
and listing vulnerabilities in a particular class or product across various vendors.
It also can reason and list vulnerabilities for the technology or framework used
in the user’s application.

• Other Components: The main components and modules of VULCAN are
detailed above, the rest parts of its architecture as shown in Fig. 2 are the
customizable features that provide means to our framework for Cloud System
testing purposes. The Vulnerability List is generated from the SNLP component
after processing the user natural language query. Moreover, the Attack Database
is an independent source of attack modules where we utilize Metasploit Modules

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 235

for testing purposes in our case study. Then, we have our target Cloud System
which is being assessed whether it is vulnerable to the discovered vulnerabilities
in the previous phase.

We have implemented our VULCAN via a set of interconnected components as
described above. In our implementation of OKB we extract NVD data and store
them in a graph database which is realized via Resource Description Framework
(RDF) triples. With our graph database, we generate an ontology that enable us to
do some reasoning tasks which are useful for vulnerability assessment within our
VULCAN. The three componets: classifiers, indexers, and vulnerability class index-
ers Together achieve dynamic vulnerability assessment for Cloud Computing. In our
SNLP implementation, we rely on our Ontology Knowledge Base for information
and the capabilities of our modules to properly fetch the cloud computing relevant
search results.

We envision that cloud computing users, providers, security analysts can use
VULCAN features to perform different type of assessment of their cloud environ-
ment. Also, our framework is flexible that developers can extend it by creating and
adding new modules and components as they see fit. In addition, users can integrate
our VULCAN’s capabilities into any other compatible mobile, desktop or cloud
security assessment frameworks. Ultimately, VULCAN should be able to mitigate
current threats that cloud environment can face via its known vulnerabilities. Our
framework is capable of exposing those vulnerabilities individually and also for a
given cloud system target, we should be able to discover new possible vulnerabilities
by performing reasoning tasks.

A typical use case scenario of using VULCAN components and modules
to assess vulnerabilities for an android device using Mercury Framework goes
like this:

1. A User provides both dynamic inputs for example Android (this data is provided
to the System Classifiers module of our VULCAN framework), and a natural lan-
guage query for example Assess for weaknesses that could allow an unauthorized
access to my device? (this query is processed within our VULCAN Semantic
Natural Language Processor – SNLP).

2. The System Classifiers generate possible android based solutions and feed them
to the Indexer module. Then, the Indexer creates relevant vulnerabilities indexes
which are used to produce vulnerabilities groups from the Vulnerability Class
Index module. A sample created vulnerabilities group named Root Access
contains indexed data of these CVE-IDs: CVE-2011-3874, CVE-2011-1823 and
CVE-2009-2692.

3. The SNLP component, will do reasoning tasks on the user query and using the
created vulnerabilities group data. It will return to the user via a dialogue agent
interface relevant results such as the IT Products that have vulnerabilities and
other necessary information that comply with the user query.

4. Using our Middle-ware application, we map the found IT Products to a Mercury
framework [17] module called Test for vulnerabilities that allow a malicious
application to gain root access to launch attacks on the products within our
targeted android user device.

236 K.Y. Oktay et al.

5. Then, VULCAN traces the deployment of the module payloads and report
whether the attacks were successful on the device or not and if the tested
vulnerabilities are still present or fixed for those IT Products.

5 Conclusion

In this position paper, we explored two challenges in the context of secure
processing on the cloud. While cloud computing offers new opportunities and is
becoming increasingly ubiquitous. As individuals, services and organizations shift
to using cloud resources, they face a fundamental challenge of loss of control over
their data. Furthermore, the key decision of moving processing to the cloud depends
upon the vulnerability of the cloud infrastructure itself. The paper describes our
preliminary work on developing vulnerability assessment tools for cloud computing.
Challenges related to service composition and partial knowledge of infrastructure
on which software will execute is explored. To address the issues due to loss
of control, the paper explores a risk aware processing model in the context of
hybrid clouds. A hybrid cloud is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities, but are
bound together by standardized or proprietary technology that enables data and
application portability. Hybrid cloud offers a new opportunity for secure processing
in the cloud environment such that processing of sensitive data on public machines
can be controlled. This raises the fundamental challenge of workload and data
partitioning across private and public machines. The paper formalizes such a
challenge as a multi-criteria optimization problem and instantiates it in a variety
of hybrid cloud settings. Furthermore, the paper sketches the solution approaches in
two distinct settings: (a) a fully hybrid model where the goal is to partition workload
to meet risk and cot requirements by paying the minimum performance overheads.
(b) A new risk aware MR architecture over the hybrid cloud which allows to take
risks while executing a single MR job in order to increase the performance.

The paper focuses on introducing a new approach to processing computation in a
hybrid cloud model and identifies challenges that need to be addressed in developing
an effective solution.

References

1. M. Lev-Ram. Why Zynga loves the hybrid cloud. http://tech.fortune.cnn.com/2012/04/09/
zynga-2/?iid=HP_LN, 2012.

2. L. Mearian. EMC’s Tucci sees hybrid cloud becoming de facto standard. http://www.
computerworld.com/s/article/9216573/EMC_s_Tucci_sees_hybrid_cloud_becoming_de_
facto_standard, 2011.

3. K. Zhang, X–y. Zhou, Y. Chen, XF. Wang, and Y. Ruan. Sedic: privacy-aware data intensive
computing on hybrid clouds. In ACM Conference on Computer and Communications Security,
pages 515–526, 2011.

http://tech.fortune.cnn.com/2012/04/09/zynga-2/?iid=HP_LN
http://tech.fortune.cnn.com/2012/04/09/zynga-2/?iid=HP_LN
http://www.computerworld.com/s/article/9216573/EMC_s_Tucci_sees_hybrid_cloud_becoming_de_facto_standard
http://www.computerworld.com/s/article/9216573/EMC_s_Tucci_sees_hybrid_cloud_becoming_de_facto_standard
http://www.computerworld.com/s/article/9216573/EMC_s_Tucci_sees_hybrid_cloud_becoming_de_facto_standard

Towards Data Confidentiality and a Vulnerability Analysis Framework. . . 237

4. K. Y. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu, S. Mehrotra, and B. Thuraisingham.
Risk-Aware Workload Distribution in Hybrid Clouds. In IEEE CLOUD, pages 229–236, 2012.

5. Hybrid Cloud. The NIST Definition of Cloud Computing. National Institute of Science and
Technology, Special Publication, 800-145, 2011.

6. M. R. Fouad, G. Lebanon, and E. Bertino. ARUBA: A Risk-Utility-Based Algorithm for Data
Disclosure. In Secure Data Management, pages 32–49, 2008.

7. S. Trabelsi, V. Salzgeber, M. Bezzi, and G. Montagnon. Data disclosure risk evaluation. In
CRiSIS, pages 35–72, 2009.

8. Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick Koudas.
2010. MRShare: sharing across multiple queries in MapReduce. Proc. VLDB Endow. 3, 1–2
(September 2010), 494–505.

9. Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large
clusters. Commun. ACM 51, 1 (January 2008), 107–113.

10. Apache Hadoop. http://hadoop.apache.org/.
11. H. Hacigümüş, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the

database-service-provider model. In SIGMOD, pages 216–227, 2002.
12. Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen, XiaoFeng Wang, and Yaoping Ruan. 2011.

Sedic: privacy-aware data intensive computing on hybrid clouds. In Proceedings of the 18th
ACM conference on Computer and communications security (CCS ’11). ACM, New York,
NY, USA, 515–526.

13. Bijit Hore, Sharad Mehrotra, Hakan Hacigümüç, Managing and querying encrypted data,
Handbook of Database Security, Editors: Michael Gertz and Sushil Jajodia, Pages 163–190,
Publisher, Springer US 2008/1/1

14. Ali Bagherzandi, Bijit Hore, Sharad Mehrotra, Search over Encrypted Data, In Encyclopedia
of Cryptography and Security, Springer 2011

15. Hakan Hacigumus, Bijit Hore, Sharad Mehrotra, Privacy of Outsourced Data In Encyclopedia
of Cryptography and Security, Springer 2011

16. Hakan Hacigumus, Bala Iyer, Sharad Mehrotra, Providing Database as a Service, IEEE
International Conference in Data Engineering, 2002

17. T. Erasmus. The heavy metal that poisoned the droid. Tech. rep. MWR Info Security,
2012. URL: http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-
paper/.

18. Aaron Steele. Ontological Vulnerability Assessment. In: Web Information Systems Engineer-
ing WISE 2008 Workshops. Ed. by Sven Hartmann, Xiaofang Zhou, and Markus Kirchberg.
Vol. 5176. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 24–35.
ISBN: 978-3-540-85199-8. URL: http://dx.doi.org/10.1007/978-3-540-85200-15.

19. Srujan Kotikela, Krishna Kavi, and Mahadevan Gomathisankaran. Vulnerability Assessment
in Cloud Computing. In: The 2012 International Conference on Security Management (SAM
2012). Ed. by Kevin Daimi and Hamid R Arabnia. WORLDCOMP 2012. July 16–19, 2012,
Las Vegas, Nevada, USA: CSREA Press, 2012, pp. 67–73.

20. National Vulnerability Database. NIST. 2012. URL: http://nvd.nist.gov/.
21. Metasploit Auxiliary Module and Exploit Database (DB). Metasploit.
22. M. Guo and J.A. Wang. An Ontology-based Approach to Model Common Vulnerabilities and

Exposures in Information Security. In: ASEE Southest Section Conference. 2009.
23. Ju An Wang and Minzhe Guo. OVM: an ontology for vulnerability management. In: Proceed-

ings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research:
Cyber Security and Information Intelligence Challenges and Strategies. CSIIRW 09. Oak
Ridge, Tennessee: ACM, 2009, 34:1–34:4. ISBN: 978-1-60558-518-5. URL: http://doi.acm.
org/10.1145/1558607.1558646.

24. R. Paul, I.L. Yen, F. Bastani, J. Dong, W.T. Tsai, K. Kavi, A. Ghafoor, and J. Srivastava. An
Ontology-Based Integrated Assessment Framework for High-Assurance Systems. In: Semantic
Computing, 2008 IEEE International Conference on. IEEE. 2008, pp. 386–393.

http://hadoop.apache.org/
http : / / labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-paper/
http : / / labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-paper/
http://dx. doi.org/10.1007/978-3-540-85200-1 5
http://nvd.nist.gov/
http://doi.acm.org/10.1145/ 1558607.1558646
http://doi.acm.org/10.1145/ 1558607.1558646

238 K.Y. Oktay et al.

25. Ju An Wang, Minzhe Guo, Hao Wang, Min Xia, and Linfeng Zhou. Ontology-based security
assessment for software products. In: Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and Information Intelligence
Challenges and Strategies. CSIIRW 09. Oak Ridge, Tennessee: ACM, 2009, 15:1–15:4. ISBN:
978-1-60558-518-5. URL: http://doi.acm.org/10.1145/1558607.1558625.

26. Anoop Singhal and Duminda Wijesekera. Ontologies for modeling enterprise level security
metrics. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research. CSIIRW 10. Oak Ridge, Tennessee: ACM, 2010, 58:1–58:3. ISBN: 978-
1-4503-0017-9. URL: http://doi.acm.org/10.1145/1852666.1852731.

27. Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Automated extraction
of security policies from natural-language software documents. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering. FSE
12. Cary, North Carolina: ACM, 2012, 12:1–12:11. ISBN: 978-1-4503-1614-9. URL: http://
doi.acm.org/10.1145/2393596.2393608.

28. Nora Yahia, Sahar A. Mokhtar, and AbdelWahab Ahmed. Automatic Generation of OWL
Ontology from XML Data Source. In: CoRR abs/1206.0570 (2012).

29. I. Bedini and B. Nguyen. Automatic ontology generation: State of the art. In: PRiSM
Laboratory Technical Report. University of Versailles (2007).

30. P. Meunier. Classes of vulnerabilities and attacks. In: Wiley Handbook of Science and
Technology for Homeland Security (2008).

31. Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid are belong to us: a
survey of current android attacks. In: Proceedings of the 5th USENIX conference on Offensive
technologies. WOOT11. San Francisco, CA: USENIX Association, 2011, pp. 10–10. URL:
http://dl.acm.org/citation.cfm?id=2028052.2028062.

32. A. Singhal and X. Ou. Security Risk Analysis of Enterprise Networks Using Probabilistic
Attack Graphs. In: NIST InterAgency Report (2011).

33. O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs. In: Formal methods
for components and objects. Springer. 2004, pp. 344–371.

34. T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, CG Senthilkumar, and T. Stallard. A
Taxonomy for Comparing Attack-Graph Approaches. Tech. rep. Submitted to ARDA. Net
Squared, Inc., 2004. URL: http://www.netsq.com/Documents/AttackGraphPaper.pdf.

35. Security Content Automation Protocol. NIST. 2012. URL: http://scap.nist.gov/.
36. Common Vulnerabilities and Exposures. MITRE. 2012. URL: http://cve.mitre.org/.
37. Common Weakness Enumeration. MITRE. 2012. URL: http://cwe.mitre.org/.
38. Common Platform Enumeration. MITRE. 2012. URL: http://cpe.mitre.org/.
39. Common Vulnerability Scoring System. FIRST. 2012. URL: http://www.first.org/cvss.
40. SPARQL Query Language for RDF. W3C. 2012. URL: http://www.w3.org/TR/rdf-sparql-

query/.
41. Sai Wu, Feng Li, Sharad Mehrotra, Beng Chin Ooi, Query Optimization for massively parallel

data processing, SoCC 2011

http://doi.acm.org/10.1145/1558607. 1558625
http://doi.acm.org/10.1145/1852666.1852731
http://doi.acm. org/10.1145/2393596.2393608
http://doi.acm. org/10.1145/2393596.2393608
http://dl.acm.org/citation.cfm?id=2028052.2028062
http://www. netsq.com/Documents/AttackGraphPaper.pdf
http://scap.nist.gov/
http://cve.mitre.org/
http://cwe.mitre.org/
http://cpe.mitre.org/
http://www.first.org/cvss
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Securing Mission-Centric Operations
in the Cloud

Massimiliano Albanese, Sushil Jajodia, Ravi Jhawar, and Vincenzo Piuri

Abstract Recent years have seen a growing interest in the use of Cloud Computing
facilities to execute critical missions. However, due to their inherent complexity,
most Cloud Computing services are vulnerable to multiple types of cyber-attacks
and prone to a number of failures. Current solutions focus either on the infrastructure
itself or on mission analysis, but fail to consider the complex interdependencies
between system components, vulnerabilities, failures, and mission tasks. In this
chapter, we propose a different approach, and present a solution for deploying
missions in the cloud in a way that minimizes a mission’s exposure to vulnerabilities
by taking into account available information about vulnerabilities and dependencies.
We model the mission deployment problem as a task allocation problem, subject to
various dependability constraints, and propose a solution based on the A∗ algorithm
for searching the solution space. Additionally, in order to provide missions with
further availability and fault tolerance guarantees, we propose a cost-effective
approach to harden the set of computational resources that have been selected for
executing a given mission. Finally, we consider offering fault tolerance as a service
to users in need of deploying missions in the Cloud. This approach allows missions
to obtain required fault tolerance guarantees from a third party in a transparent
manner.

M. Albanese (�) • S. Jajodia
Center for Secure Information Systems, George Mason University,
Fairfax, VA 22030-4422, USA
e-mail: malbanes@gmu.edu; jajodia@gmu.edu

R. Jhawar • V. Piuri
Department of Computer Science, Università degli Studi di Milano, Crema, Italy
e-mail: ravi.jhawar@unimi.it; vincenzo.piuri@unimi.it

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__11,
© Springer Science+Business Media New York 2014

239

mailto:malbanes@gmu.edu
mailto:jajodia@gmu.edu
mailto:ravi.jhawar@unimi.it
mailto:vincenzo.piuri@unimi.it

240 M. Albanese et al.

1 Introduction

In recent years, individuals and organizations are increasingly resorting to Cloud-
based services for storage, processing, and management of their data and appli-
cations. This practice offers several advantages to application and data owners –
users, in general – with respect to traditional in-house management. First, users
are relieved from buying expensive hardware and software licenses, and recruiting
skilled personnel to administer and maintain their computing resources, thus
providing significant economic savings. Second, users can access their applications
using any device providing Internet connectivity. Third, even individuals with
little or no IT background can take advantage of Cloud-based services to develop
applications with very high scalability and elasticity requirements. These benefits
are also providing an incentive for users to leverage Cloud-based solutions to deploy
mission-critical applications.

A Cloud computing infrastructure is typically built by inter-connecting mas-
sive amounts of hardware according to well-defined design patterns, resulting in
large-scale data centers that can elastically deliver computing resources to the
users through virtualization. The main problem of adopting such Cloud-based
Infrastructure-as-a-Service (IaaS) model is that the data centers, due to their very
high complexity, may be vulnerable to various cyber-attacks and subject to a large
number of failures, which are not within the control scope of the users, thus
increasing users’s security and fault tolerance concerns [1]. We identify two primary
reasons why state-of-art techniques are unable to suitably address such concerns:

• Most security solutions either design data centers integrating tools such as
intrusion detection systems and firewalls, or develop strategies to implement
applications using techniques such as data obfuscation and memory manage-
ment. However, interdependencies between the infrastructure, applications, and
residual vulnerabilities are not taken into account.

• Fault tolerance methods are generally applied at application procurement and
development time. This approach requires users to build their applications
by considering environment specific parameters. However, it is infeasible to
combine failure behavior and system architecture in Cloud computing due to the
limited information about the infrastructure that providers release to the users.

The goal of this chapter is to provide an overview of approaches that can
address the aforementioned problems. We discuss the inherent challenges, possible
solutions, and relevant open issues. In particular, as an approach to address the
security issues, we describe a solution that considers the current vulnerability status
of the infrastructure and deploys mission-critical applications (or simply, missions)
so as to minimize their exposure to existing network vulnerabilities. Once a mission
is deployed, the proposed solution then protects the resources (computational hosts
and network links) used by the mission to ensure high levels of security during
mission execution (Sects. 3 and 4). Note that this approach is mission-centric and
aims at providing maximum security for missions, given the current state of the

Securing Mission-Centric Operations in the Cloud 241

infrastructure. To address the fault tolerance issues, we discuss a scheme that can
help design fault tolerance solutions based on users’ requirements at runtime and
apply it to missions in a transparent manner. The latter approach can be integrated
within the overall framework for delivering fault tolerance as a service to users’
applications or missions (Sect. 5).

2 Background

In this section, we present some preliminary concepts and our assumptions about
the Cloud infrastructure and the missions. We discuss the vulnerability behavior
and failure characteristics of typical Cloud infrastructures, and the requirements for
satisfying a mission’s dependability goals.

2.1 Cloud Infrastructure

A Cloud computing infrastructure is typically built by inter-connecting large-scale,
geographically distributed, data centers. Each data center consists of thousands of
hosts that are organized into racks and clusters, and each host contains multiple
processors, storage disks, memory modules and network interfaces. Physical hosts
are first connected via high-speed rack switches, which are in turn connected
to aggregation switches (AggS), forming a subsystem that can be viewed as a
cluster. A cluster groups hosts with similar resource characteristics or administrative
parameters. An AggS connects tens of racks to redundant access routers (AccR)
that finally connects different data centers via the Internet backbone. Typically, data
centers also deploy security services (e.g., firewalls, intrusion detection systems) to
protect network elements from potential threats, and install hypervisors on physical
hosts so that VMs with desired size and software stack can be instantiated and
delivered to the users upon request.

Vulnerability characteristics. Despite careful security engineering, a number of
vulnerabilities remain in the network and allow malicious adversaries to launch
different types of cyber-attacks. For example, an attacker may exploit vulnerabilities
in services such as ftp, rsh, and sshd to gain desired access privileges on a given host.
Such exploits can be used to compromise users’ applications or missions deployed
in the system. Vulnerabilities and attack paths in the network can be analyzed
using vulnerability scanners, and approaches based on attack graphs, dependency
graphs, and attack surfaces (e.g., [2–5]). Analysis tools can also be extended with
probabilistic schemes and ranking methods to quantify the vulnerability level of
individual hosts. For simplicity, in this chapter, we assume that a vulnerability value
Vh is pre-computed for each host h ∈H in the infrastructure by adopting one of the
existing techniques.

242 M. Albanese et al.

A physical host h ∈ H in the infrastructure can be characterized using a
vector

−→
h = (h[1],h[2], . . . ,h[d],h[d + 1]), where the first d dimensions represent

the host’s residual capacity for each resource type (e.g., CPU, memory). The
d+1th dimension represents the host’s vulnerability value Vh. The residual resource
capacities and the vulnerability level of each host are represented using normalized
values in [0,1]. For example,

−→
h = (cpu,mem,Vh) = (1,1,1), where cpu = 1 and

mem = 1, implies that both resources are fully available, whereas Vh = 1 means that
the host is extremely vulnerable.

Failure behavior. Due to their high complexity, infrastructure components are
subject to a large number failures that may prevent the system from fulfilling its
intended functionality. Research on a system’s failure characteristics is necessary
because infrastructure failures may have a significant impact on the applications
deployed in the Cloud. Several researchers54 [6, 7] used data mining techniques
to understand the failure behavior of data center components. Examples of key
observations from these studies are as follows:

• The annual failure rate for servers is around 8 %. The average number of repairs
is 2 per machine (e.g., 20 repair or replacement events in 9 machines were
identified over a 14 months period).

• Hard disks are the most failure-prone hardware components and the most
significant reason behind server failures (about 78 % of total faults or replace-
ments affected hard disks).

• Among network devices, top-of-rack switches are most reliable (failure rate less
than 5 %) and load balancers are least reliable (failure probability of 1 in 5).
Load balancers mainly fail due to software bugs and configuration errors, and
experience short but frequent failures.

The failure behavior of various server and network components can also be
analyzed using analytical models such as fault trees and Markov chains [8, 9]. Such
modeling techniques, as discussed in Sect. 5, can be used to analyze the impact of
component failures on users’ applications.

2.2 Missions

We consider a mission M to be a composition of a set of tasks M = {τ1, . . . ,τm}. This
model-independent definition allows us to consider different software architectures
for the mission (e.g., web services, business processes, scientific applications) as
well as different formalisms (e.g., Petri Nets, work flows). For example, a mission
can be a three-tier web application realizing an e-Commerce service or a scientific
tool with tasks performing graph theoretical calculations on geographical maps.
Intuitively, a mission is successful if (i) all the tasks start from a correct initial state,
perform their operations, and generate the correct output in a specified amount of
time, and (ii) the protocol that composes the information from individual tasks can

Securing Mission-Centric Operations in the Cloud 243

justifiably be trusted. Each task in the mission can be associated with a tolerance
value tol when it is implemented using some security mechanisms (e.g., memory
management guards to protect from buffer overflow attacks). Intuitively, the tol
value provides an estimate of the maximum level of vulnerability that the task can
be exposed to without compromising its successful completion. Each mission task
may also be replicated to tolerate failures. In fact, we create a set of task replicas

Rk = {τ1
k , . . . ,τ

|Rk |
k } for each task, and the overall mission becomes a composition

of the set of replicated task sets T = {ti} = ⋃
τk∈M Rk. We treat task replicas as

independent tasks for the purpose of mission deployment.
Similarly to physical hosts, we characterize each mission task using a vector−→t = (t[1], t[2], . . . , t[d], t[d + 1]), where the first d dimensions represent the task’s

requirements for specific computing resources (e.g., CPU, memory) and the d +
1th dimension is the task’s maximum vulnerability tolerance value tol. Resource
requirements and vulnerability tolerance are also represented using normalized
values in [0,1], e.g.,−→t = (cpu,mem, tol) = (0.5,0.6,0.6).

Security of the mission. A number of aspects must be considered to securely oper-
ate a given mission in a Cloud infrastructure. In this chapter, instead of considering
traditional approaches based on network hardening or applying software security
techniques, we study the following aspects:

• Secure mission deployment: Given a mission and the current vulnerability state of
the infrastructure, deploy the mission’s tasks in the network using the resources
(hosts and network links) that are most suitable for successfully executing the
mission. We formulate this problem as a task allocation problem that minimizes
the mission’s exposure to existing vulnerabilities. We consider both dynamic and
static versions of this problem by modeling missions ignoring or considering
temporal aspects respectively (see Sect. 3).

• Static and dynamic resource protection: Given a mission and the resources it uses
(after it has been deployed), harden these resources in a way that is optimal with
respect to a given cost function, in order to ensure high levels of security to the
mission during execution. The static version of the problem protects resources for
the entire duration of the execution whereas the dynamic version protects only
the resources still to be used for execution (see Sect. 4).

Both these aspects should be addressed for any given mission in order to ensure
that it achieves high levels of security in the Cloud. Note that the application of
the resource protection scheme does not change the solution space of the mission
deployment scheme. Therefore, the above two aspects generate independent, yet
complementary, results that together allow the mission’s execution in the Cloud
infrastructure in a way that minimizes its exposure to vulnerabilities and the impact
of exploits.

Fault tolerance of the mission. Implementing a fault tolerant mission using
traditional approaches may be infeasible since the system’s architectural details are
not widely available to Cloud computing users. As a consequence, a new approach

244 M. Albanese et al.

to address fault tolerance issues of missions is necessary. In this chapter, we discuss
an approach where missions can obtain required fault tolerance properties as a
service from a third-party fault tolerance service provider. In particular, we study
the following aspect:

• Fault tolerance management: Given a mission and its fault tolerance require-
ments, apply a comprehensive fault tolerance solution to the mission and
ascertain users’ requirements at runtime. We present a scheme that realizes gen-
eral fault tolerance mechanisms as independent modules that can transparently
function on the missions, and based on user’s requirements, appropriate modules
are selected and composed in a specified manner to form a comprehensive
solution (see Sect. 5).

3 Secure Mission Deployment

The first step to securely execute a given mission is to deploy the mission tasks in
the Cloud such that their exposure to vulnerabilities is minimized. Since requests
for mission deployment may arrive at any time, we develop a deployment strategy
that considers the current resource allocation and vulnerability status of the Cloud.
When a request is received, the allocation for the new mission is computed based
on the availability of currently unused resources. Once the mission is deployed,
resource allocation and vulnerability status are updated accordingly. In this section,
we present a detailed problem formulation, and an approach to solve the mission
deployment problem. We also discuss the challenges that still need to be addressed.

Problem formulation. To focus on the deployment problem, we assume that a
virtual machine containing required resources and services is instantiated for each
task in the mission. This assumption reduces mission deployment to a task allocation
problem that can be characterized as a function a : T→H which maps each mission
task ti ∈ T to a physical host h j ∈H in the infrastructure. The binary variable ai j

denotes the truth value of a(ti) = h j, that is,

(∀ti ∈ T,h j ∈H) ai j =

{
1 ifa(ti) = hj

0 otherwise

Every time a task ti is allocated on host h j, the vulnerability score of host
h j may increase by ΔVti,h j since new vulnerabilities are potentially introduced
on the host. Note that, although multiple hosts may have similar configurations
and, consequently, similar vulnerability scores, their vulnerability scores may vary
significantly at run time, as tasks are dynamically allocated and deallocated. Let V ∗h j

denote the vulnerability score of host h j after mission deployment. Our objective

Securing Mission-Centric Operations in the Cloud 245

is to find, among all possible allocations a ∈ A , the allocation that minimizes the
largest V ∗h j

amongst all the hosts involved in the mission, that is

min
a∈A

max
h j∈H |∃ti∈T,a(ti)=h j

V ∗h j
(1)

Note that, ideally, the mission’s exposure to vulnerabilities in the system after
allocation should be zero. In practice, the effectiveness of task allocation must be
measured in terms of the deviation from the ideal behavior. Furthermore, note that
this formulation focuses on optimizing the security and workload of the mission.
The fault tolerance aspects of the mission are integrated in the optimization problem
in the form of constraints on the placement of each mission task in the Cloud
infrastructure (e.g., the distribution constraint described below). We provide a
detailed discussion on fault tolerance constraints, and a method to derive them, in
Sect. 5.

Each allocation a ∈ A should satisfy the following constraints to ensure the
dependability of the mission.

• Consistent allocation: This constraint specifies two conditions that must be
satisfied across all the hosts in the infrastructure at all times.

(∀ti ∈ T) ∑
h j∈H

ai j = 1 (2)

(∀h j ∈H)(∀x ∈ [1,d]) ∑
ti∈T

ai j · t[x]≤ h[x] (3)

Equation 2 specifies that each mission task must be allocated only on a single
physical host. Equation 3 implies that the amount of resources consumed by all
the tasks mapped on a single host cannot exceed the total capacity of that host in
any dimension.

• Distribution: Equation 4 specifies that the allocation function a : T →H must
map all the replicas of a task on different hosts to avoid single points of failure.

(∀τk ∈M)(∀τ ′k,τ ′′k ∈ Rk) a(τ ′k) �= a(τ ′′k) (4)

• Vulnerability tolerance: To protect the tasks from being compromised due to the
vulnerabilities on the hosts on which they are allocated, this constraint specifies
that a task can be mapped only to the hosts whose vulnerability value V is less
than the vulnerability tolerance tol of that task, that is,

(∀h j ∈H)(∀ti ∈ T) ti[d+ 1]≥ ai j ·h j[d + 1] (5)

An attacker can exploit the vulnerabilities on a given host h j and compromise
the mission if a task ti ∈ T is placed on host h j having vulnerability value higher
than the tolerance level of the task.

246 M. Albanese et al.

Mission deployment solution. Modeling secure mission deployment as an opti-
mization problem has not been well-studied in the literature. Given the NP-hardness
of the general allocation problem, existing solutions typically adopt heuristics,
meta-heuristics, and mathematical programming based approaches. In general, such
approaches either have scalability issues or relax the optimality goals. In our context,
we need an approach that solves the mission deployment problem in a time-efficient
manner and provides acceptable sub-optimal results. One possible solution is based
on the A∗ state-space search method discussed in [10]. Here, we provide a detailed
description of this approach.

To enable A∗ exploration, the overall state-space is represented as a tree. We start
by describing the data structure supporting the exploration of the solution using the
A∗ algorithm:

• A state s is a possible choice for allocating task ti on host h j. A state is represented
by the pair (ti,h j).

• The root state represents is the initial state from which the algorithm starts, with
no task being allocated yet.

• An operation of the A∗ algorithm generates the set of feasible child states for a
given state s.

• The solution path is the path from the root state to the first leaf state that is
reached during state-space exploration.

• The goal state is a state in which all the tasks have been allocated. A leaf state
corresponds to a complete allocation.

To generate the search tree from the root state, the set T of tasks is initially sorted
in increasing order of vulnerability tolerance tol and considered for allocation in this
order. The ith task in the sorted list corresponds to the ith level in the state-space
tree. Given a state s = (ti,h j), the next task t ′ from the sorted list is chosen, and all
the hosts h j ∈H that satisfy the dependability constraints (consistent allocation,
distribution, and vulnerability tolerance constraints) with respect to t ′ are shortlisted.
The successors of state s are all the states mapping t ′ to one of the shortlisted hosts.

The evaluation function for state s in the state-space tree is as follows:

fvul(s) = gvul(s)+ hvul(s) (6)

where gvul(s) is the aggregate vulnerability score associated with the allocation
path from the root state to the current state s, and hvul(s) estimates the minimum

Algorithm 1 Estimate cost
1: Repeat steps 2 through 4 until a goal state is reached.
2: Use the A∗ operation to obtain the set S of feasible successors of the current state.
3: Calculate (Vhj +ΔVti,h j) for each state in S.
4: Select the state with minimum (Vhj +ΔVti,h j) value and temporarily mark it as the current state

s. {Note that we choose the state with minimum value to keep the value of hvul(s) as the lower
bound.}

Securing Mission-Centric Operations in the Cloud 247

Algorithm 2 State-space tree traversal scheme
1: Push the root state in OPEN and execute steps 2–5 until either a complete allocation is obtained

or OPEN becomes empty.
2: Pop the state s with minimum fvul(s) from OPEN.
3: If state s corresponds to the goal state, construct the final solution by traversing the tree in the

reverse order from the goal state to the root state; else, generate the successors of s using the
A∗ operation.

4: For each successor s∗ of s

(i) Calculate new_gvul , the aggregate vulnerability from the root state to state s∗.
(ii) If the entry corresponding s∗ already exists in either OPEN or CLOSE and its real cost is

less than that of the current successor, drop the current successor since the same state has
already been reached with lower cost. Otherwise, continue with the next step.

(iii) Estimate the lower bound hvul(s∗) and compute fvul(s∗) = gvul(s∗)+hvul(s∗).
(iv) Push the successor s∗ and its fvul(s∗) value in OPEN since state s∗ has been successfully

generated and its cost computed.

5: Push the parent state s in CLOSE since it has been visited.

additional vulnerability associated with completing the allocation from state s to a
goal state. The value of gvul(s) is computed as follows:

gvul(s) = gvul(parent(s))+Vh j +ΔVti,h j (7)

where gvul(parent(s)) denotes the aggregate vulnerability score associated with the
allocation path leading to the parent state of s and (Vh j +ΔVti,h j) denotes the updated
vulnerability score of host h j after allocation of task ti. The gvul(s) value for the root
state is initialized to 0.

If we consider a uniform cost search, the lower bound estimate for each state
must be considered zero, that is, hvul(s) = 0. The A∗ algorithm, in this case, obtains
an optimal solution but expands a higher number of states (as shown in Example 1).
Therefore, a heuristic is necessary to estimate hvul . Algorithm 1 outlines an approach
to realize the estimateCost function. In this case, hvul is computed as the total
vulnerability value along the traversed path. This algorithm significantly improves
the performance of the traversal scheme when compared to a uniform cost search
without influencing the final result.

The state-space tree traversal scheme provides the solution path that minimizes
the mission’s exposure to the vulnerabilities in the system. The traversal scheme
dynamically generates the state-space tree based on the states that are expanded
and visited. The tree expansion starts from the root state and stops at the goal
state, where it obtains a near-optimal allocation. Two data structures OPEN and
CLOSE are used for making the traversal decisions. OPEN contains the set of states
that are generated using the A∗ operation but not yet visited, and CLOSE contains
the states that are already visited. Each entry in OPEN and CLOSE contains a state s
and its corresponding fvul(s) value. Algorithm 2 outlines the traversal scheme using
(i) the A∗ operation which, given a state s, generates the set of feasible child states
or successors, and (ii) the estimateCost heuristic that calculates the lower bound
vulnerability value hvul of each successor.

248 M. Albanese et al.

Table 1 Example scenario for mission deployment

Infrastructure Mission

Host
Residual CPU capacity,
vulnerability level Task

CPU requirement,
vulnerability tolerance

h j ∈H
−→
h (cpu,V) ti ∈ T −→t (cpu, tol)

h1 0.5, 0.2 t1 0.4, 0.2
h2 0.3, 0.2 t2 0.4, 0.2
h3 0.7, 0.1 t3 0.3, 0.4
h4 0.5, 0.3

Table 2 Increase in
vulnerability scores

ΔVti,h j h1 h2 h3 h4

t1 0.2 0.1 0.1 0.3
t2 0 0.1 0.2 0.1
t3 0.1 0.1 0.2 0

Example 1. Consider an infrastructure with four hosts H = {h1, . . . ,h4} and a
mission with two tasks M = {τ1,τ2}, where R1 = {τ1

1 ,τ2
1} and R2 = {τ1

2}. Mission
deployment is driven by a : {t1, t2, t3} → {h1,h2,h3,h4}, and distribute constraint
holds for tasks t1 and t2. For simplicity, consider only a single resource dimension
for hosts and tasks (say CPU). Table 1 outlines available CPU capacity and
vulnerability level of each host, and CPU requirements and vulnerability tolerance
threshold of each task. Table 2 provides details on the increase in the vulnerability
scores.

Figure 1a illustrates the state-space tree generated by our algorithm during
mission deployment. The algorithm starts from the root state by generating the states
for the first level in the tree. The operation considers task t1, discards hosts h2 and h4

since they violate the capacity and vulnerability threshold constraints respectively,
and generates states (t1,h3) and (t1,h1). The fvul(s) values for the two states are
calculated as 0.7 and 1.0 respectively and pushed into OPEN.

root

(t1, h3), 0.7
(t1, h3), 0.7

(t2, h1), 0.7
(t2, h1), 0.7

(t3, h2), 0.7 (t3, h3), 0.7 (t3, h3), 0.7 (t3, h4), 0.7

(t2, h3), 0.7

(t1, h1), 0.4

(t3, h4), 1.0 (t3, h2), 1.0(t3, h4), 0.7 (t3, h2), 0.7

(t1, h1), 1

root

using the estimateCost heuristic assuming hvul(s)=0

a b

Fig. 1 State-space tree expanded using the A∗ traversal scheme

Since state (t1,h3) has the smallest fvul(s) value, it is extracted from OPEN and
marked as the current state. Its successors are then generated and fvul values

Securing Mission-Centric Operations in the Cloud 249

calculated. In this case only state s = (t2,h1) with f vul(s) = 0.7 is returned and
pushed into OPEN. In particular, after calculating gvul(s) = 0.4, the estimateCost
function is used to estimate the vulnerability value hvul(s) along this path. In this
case, feasible states corresponding to task t3 are considered, and the state with
minimum gvul(s) value (0.3) is returned since states corresponding to task t3 are
leaf nodes.

At this point, state (t2,h1) is the entry with the lowest fvul(s) value in OPEN. This
state is marked as the current state and its successors (t3,h4), (t3,h3) and (t3,h2) are
generated. The fvul(s) value of all these states are calculated and pushed in OPEN.
The state (t2,h1) is now pushed in CLOSE. The states corresponding to the task t3
are similarly expanded and visited. The state-space search has now reached the goal
state and found the complete task allocation. The algorithm pushes (t3,h4) in CLOSE,
and returns a(t1) = h3, a(t2) = h1 and a(t3) = h4 as the complete allocation solution.

When uniform cost is assumed (i.e., (∀s)hvul(s) = 0) and this heuristic is not
used, nine states are expanded to perform task allocation, as shown in Fig. 1b, while
our algorithm expands only six states.

Open issues. Based on the above formulation of the mission deployment problem,
we identify that three main challenges still need to be addressed.

• VM images selection: For each task, we need to instantiate a virtual machine
containing all the resources and the services required to successfully execute
that task. Hence, during mission deployment, we must first map each task to an
available VM image and then to a physical host.

Existing Cloud computing services usually require users to manually select
VM images from a repository. Typically, users can also upload and share their
VM images with other customers. This feature exacerbates the security problems
in public Cloud services, and such problems cannot be identified by the users in a
straightforward manner during image selection. For example, Balduzzi et al. [11]
studied the vulnerability issues in Amazon EC2 service1 by analyzing over 5,000
public images; using the Nessus vulnerability scanner, they identified that 98 %
of Windows AMIs (Amazon Machine Images) and 58 % of Linux AMIs had
software with critical vulnerabilities. This implies that an automated security-
driven search scheme is required to deploy mission tasks. In other words, a task
allocation function aimage : T → I which maps each task t ∈ T to a VM image
I ∈I based on security requirements needs to be defined.

• Dynamic mission deployment: Instead of allocating resources to tasks for the
entire duration of a mission, we must consider the execution time of each task
and perform allocation only for necessary periods of time while minimizing its
exposure to the vulnerabilities.

The mission model must be extended to include the start time and a deadline
for each task. This extension allows us to generate the target execution timeline
of the mission and obtain an enhanced mission model. This mission model is a

1http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

250 M. Albanese et al.

special kind of labeled graph M = (S,T,ρ), where S is a set of nodes representing
the state of the computation, T is a set of edges representing tasks, and ρ : T →
2R is a function mapping each task to the pool of resource types required to
complete the task. Additionally, edges are labeled with task durations. Similar
to the mission deployment approach discussed in this section, scalable solutions
that can efficiently schedule mission tasks are required to address this challenge.

• Incremental vulnerability analysis: Each allocation introduces a set of new
services on a host and increases its vulnerability level. We need a function
v : H × T → R that can estimate the increase in the vulnerability level ΔVti,h j

to facilitate the “what-if” analysis. One possible approach to vulnerability
assessment is by means of attack graphs, and a naive method to estimate ΔVti,h j

is to discard the original attack graph and perform re-computation from scratch
using the new data. However, such re-computation is wasteful since typically
the changes are small, resulting in information that is not very different from
the original one. Therefore, we need to take an incremental approach that (i)
identifies the portions of the attack graph that have changed due to an event,
(ii) re-computes the vulnerability information only in the changed portion, and
(iii) combines the new and original information to provide updated results.

4 Mission Protection

The second step to securely execute a mission is to protect the hosts and network
links used by the mission from possible cyber-attacks. In this section, we formulate
the hardening problem and the cost model, and discuss the approach presented in
[2] to solve the problem using attack graphs.

Problem formulation. A network hardening strategy is a set of atomic actions
that can be taken to guard various resources in the network. For instance, an action
may consist in stopping the ftp service on a given host. We start by introducing the
notion of attack graphs that represent prior knowledge about vulnerabilities, their
dependencies, and network connectivity. Given a set E of exploits, a set of security
conditions C (e.g., existence of a vulnerability on a host or connectivity between
two hosts), a require relation Rr ⊆ C× E , and an imply relation Rr ⊆ E ×C, an
attack graph is a directed graph G = (E ∪C,Rr ∪Ri), where E ∪C is the vertex set
and Rr ∪Ri is the edge set [2]. The term Initial conditions refers to the subset of
conditions Ci = {c ∈ C | �e ∈ E s.t. (e,c) ∈ Ri}, whereas other conditions, which
are usually consequences of exploits, are referred to as intermediate conditions.

Example 2. In Example 1, mission tasks are allocated on hosts h3, h1 and h4.
Assume that our objective is to prevent the attacker from gaining root privileges on
host h4, i.e., we want to avoid reaching condition root(h4) so as to protect task t3.

Figure 2 illustrates an example attack graph in which exploits are represented
using rectangles and conditions using ovals. The dashed ovals are the initial

Securing Mission-Centric Operations in the Cloud 251

Fig. 2 Example of an attack graph including possible hardening actions, initial conditions,
intermediate conditions, and exploits

conditions and other ovals represent intermediate conditions. The attack graph is
simplified in several ways. For example, a single condition f t p(hs,hd) is used to
denote transport-layer f t p connectivity between two hosts hs and hd , physical-
layer connectivity, and existence of the f t p daemon on host hd . The attack graph
depicts a simple scenario, with hosts h3, h1 and h4, and four types of vulnerabilities:
f t p_rhosts, rsh, sshd_bo f , and local_bo f . An example of attack path is the one
where the attacker starts by establishing a trust relationship with host h4 (condition
trust(h4,h3)) by exploiting an f t p vulnerability on host h4 (f t p_rhosts(h3,h4)).
The attacker can then gain user privileges on host h4 (condition user(h4)) with an
rsh login, and achieve the goal condition root(h4) using a local buffer overflow
attack.

252 M. Albanese et al.

An allowable hardening action is any subset of initial conditions such that all the
conditions can be jointly disabled in a single step, and no other initial condition is
disabled as a consequence. The rounded rectangles in the attack graph in Fig. 2 are
examples of allowable hardening actions:

• stop_ f t p(h4) = { f t p(h1,h4), f t p(h3,h4)}
• block_host(h3) = { f t p(h3,h1),sshd(h3,h1), f t p(h3,h4)}
• stop_sshd(h1) = {sshd(h3,h1)}

Given an attack graph, a set A of allowable actions and a set of target conditions
Ct = {c1, . . . ,cn}, a hardening strategy S is a set of hardening actions such that
conditions in Ct cannot be reached after all the actions in S are applied.

Note that removing specific initial conditions may require to take actions that
disable additional conditions (e.g., conditions that are not part of any attack path).
Therefore, in order to obtain a cost-effective hardening strategy, we need to define
a cost model that takes the impact of hardening actions into account. A hardening
cost function is any function cost : S →R

+ that satisfies the following conditions:

cost(/0) = 0 (8)

(∀S1,S2 ∈S)(C(S1)⊆C(S2) =⇒ cost(S1)≤ cost(S2)) (9)

(∀S1,S2 ∈S)(cost(S1∪S2)≤ cost(S1)+ cost(S2)) (10)

where S denotes the set of all possible strategies and C(S) denotes the set
of all conditions disabled under strategy S. Note that many different cost func-
tions can be defined. For example, a basic cost function could simply count the
number of initial conditions that are removed under a hardening strategy. Two
possible hardening strategies for the attack graph Fig. 2 are S1 = {stop_ f t p(h4)}
and S2 = {block_host(h3)}. If we assume that cost({stop_ f t p(h4)}) = 20 and
cost({block_host(h3)}) = 10, then the optimal strategy with respect to root(h4) is
S2 = {block_host(h3)}.
Mission protection solution. Most hardening techniques starts from the target
conditions and move backwards through the attack graph to make logical inferences.
Such backward search schemes typically face combinatorial explosion issues.
Therefore, we must define a scalable scheme to build hardening strategies.

Starting from initial conditions, the hardening scheme in [2] traverses the attack
graph forward. A key advantage of traversing the attack graph forward is that in
a single pass, the algorithm can compute hardening strategies with respect to any
condition. More importantly, forward traversal enables us to prune the search space,
as briefly discussed below. The hardening algorithm first performs a topological
sort of the nodes in the attack graph, and pushes them into a queue, with initial
conditions at the front of the queue. Each node q in the queue is then analyzed and
a set σ(q) of possible hardening strategies w.r.t. to q is determined. Based on the

Securing Mission-Centric Operations in the Cloud 253

nature of q (exploit or security condition), different steps are taken to compute σ(q),
as described in the following.

• If q is an initial condition, it is associated with a set of strategies σ(q) such that
each strategy contains one and only one of the allowable actions that disable q.

• If q is an exploit, it is associated with a set of strategies σ(q) that is the union of
the sets of strategies for each condition c required by q. In fact, an exploit can be
prevented by disabling at least one of its required conditions.

• If q is an intermediate condition, it is associated with a set of strategies σ(q) such
that each strategy is the union of a strategy for each of the exploits that imply q.
In fact, in order to prevent the attacker from reaching an intermediate condition,
all the exploits that imply it must be prevented

In order to prevent the combinatorial explosion of the search space, the algorithm
only maintains the k best solution w.r.t. cost for each intermediate node. Setting
k = 1 will result in very fast execution, but will provide more expensive solutions.
Higher values of k will increase execution times but will result in solutions that are
closer to the optimal one. This scheme, under reasonable assumptions, provides an
approximation ratio that, for k = 1, is bounded by nd/2, where n is the maximum
in-degree of nodes in the graph and d is the depth of the graph. Additionally,
experiments reported in [2] show that, in practice, the approximation ratio is much
lower than its theoretical upper bound.

Example 3. Consider again the attack graph of Fig. 2, and assume that the cost
of actions stop_ f t p(h4), block_host(h3), and stop_sshd(h1) is 20, 10, and 15
respectively. After executing the topological sort and examining initial conditions,
using k = 1, we obtain the following intermediate results:

• σ(f t p(h1,h4)) = {{stop_ f t p(h4)}}
• σ(f t p(h3,h1)) = {{block_host(h3)}}
• σ(sshd(h3,h1)) = {{block_host(h3)}}
• σ(f t p(h3,h4)) = {{block_host(h3)}}

When the algorithm examines the exploit rsh(h1,h4), before pruning we obtain
σ(rsh(h1,h4)) = {{stop_ f t p(h4)},{block_host(h3)}}. After pruning, we obtain
σ(rsh(h1,h4)) = {{block_host(h3)}}. Similarly, it is easy to show that the algo-
rithm finally returns σ(root(h4)) = {{block_host(h3)}} as the recommended hard-
ening strategy, which in this case coincides with the optimal solution.

Open issues. The dynamic version of the problem where we must take into account
information about ongoing attacks remains an open issue. This will require the
additional capability of detecting and tracking cyber attacks in real time as well as
assessing and mitigating their potential impact on deployed missions. That is, given
a mission, the set of hosts and links used to deploy the mission, and a stream of
security alerts, we must find a cost-optimal time-varying strategy to harden, at any
point in time, only the subset of resourced not used yet. A solution to this problem
will help minimize the disruption that network hardening may cause to legitimate
users.

254 M. Albanese et al.

5 Fault Tolerance Management

Fault tolerance is a critical and highly desirable property for mission deployed in
the Cloud, given that large Cloud installations may be subject to a large number
of failures. In this section, we adopt the perspective discussed in [12], where
mission tasks can acquire desired fault tolerance properties as a service from a third-
party (the fault tolerance service provider). The service provider must perform the
following activities in order to realize this perspective.

• Defining an approach to implement general fault tolerance mechanisms as
independent modules such that each module can transparently function on
mission tasks.

• Analyzing the fault tolerance properties of each module by taking into account
the failure behavior and system architecture. This sub-problem allows the service
provider to select appropriate low-level modules based on the users’ high-level
goals.

• Defining a scheme to deliver a holistic fault tolerance solution to mission tasks
by combining the set of selected modules.

Realizing fault tolerance modules. To offer fault tolerance as a service, the
service provider must define general fault tolerance mechanisms in a way that
they can transparently function on mission tasks deployed on virtual machines.
This requirement can be satisfied by applying fault tolerance mechanisms at the
virtualization layer [13]. We use f t_unit to denote the fundamental module that
applies a coherent fault tolerance mechanism at the granularity of a VM instance.
For instance, an f t_unit may replicate the entire VM instance on multiple physical
hosts or an f t_unit may detect server crashes using well-known failure detection
algorithms (e.g., by running the heartbeat protocol in the VM independently of
mission tasks). In this manner, replication and failure detection can be performed
without making any changes to the mission’s source code, and the impact of
hardware failures on the mission can be handled transparently.

Since different fault tolerance units realize different mechanisms, they offer
a unique set of fault tolerance properties. Such properties can be characterized
using their functional, operational, and structural attributes. The fault tolerance
property p of an f t_unit can be denoted as p = (u, p̂,A) where u represents the
f t_unit, p̂ is the abstract property (e.g., availability, reliability), and A is a set of
attributes that refers to the granularity at which u can handle failures, benefits and
limitations of using u, and quality of service parameters. An order relationship
can be defined on the domain of each attribute a ∈ A. Therefore, by looking at
the attributes set A associated with an f t_unit, the service provider can evaluate
fault tolerance properties that can be achieved with its use. An example of fault
tolerance property for an f t_unit u∗ is p = (u∗,availability = 98%,{mechanism =
active_replication,no_o f _replicas = 4, f ault_model = node_crashes}).
Analyzing the effectiveness of a fault tolerance module. The effectiveness of an
f t_unit can be evaluated in terms of the level of reliability and availability that can

Securing Mission-Centric Operations in the Cloud 255

be obtained with its use. This analysis requires the service provider to (i) evaluate
different configurations of modules, and (ii) quantify the reliability and availability
obtained with each f t_unit by taking into account the failure characteristics of the
system. We briefly discuss each of these two aspects in the following.

Evaluating the configuration of fault tolerance modules. A fault tolerance module
f t_unit may have different configurations. For example, the f t_unit realizing
replication schemes may have three configurations, namely, semi-active, semi-
passive, and passive. These configurations represent the majority of fault tolerance
implementations that are currently being used, and each configuration provides
a different set of properties. One approach to characterize the effectiveness of
an f t_unit, in a specific configuration, is to use Markov chains. As an example,
we discuss Markov modeling for semi-active replication. Other models can be
generated in a similar manner [8].

In semi-active replication, the input is either provided to all the replicas or state
information of the primary replica is frequently sent to backup replicas. All the
replicas (primary as well as backup replicas) execute all the instructions. However,
only the output generated by the primary replica is made available to the user, and
output messages from the backup replicas are logged. When the primary replica
fails, one of the backup replicas can resume execution from a correct state.

Fig. 3 Example of a Markov
model for semi-active
replication

Figure 3 illustrates the Markov model of an f t_unit that realizes a semi-active
replication scheme with two replicas. Each state is represented as (x,y) where x = 1
implies that the primary replica is working and x = 0 implies that it failed. Similarly,
y represents the state of the backup replica. Normal execution starts in state (1,1)
and remains in this state as long as both replicas are available. When either the
primary replica or the backup replica fails, the system moves to state (0,1) or
(1,0) accordingly, and the other replica continues the execution. From the mission’s
perspective, states (0,1) and (1,0) are equivalent, thus, they are represented using
a single state. In state (0,1) or (1,0), the recovery mechanism is initiated, and
the system moves to state (1,1) if the recovery is successful. Otherwise, if the
current replica fails, the system transitions to state (0,0) and the service becomes
unavailable. In the figure, λ denotes the failure rate and μ denotes the recovery rate.

Deployment contexts for a fault tolerance module. If all the replicas generated
through an f t_unit are deployed on the same physical host, the host failure may

256 M. Albanese et al.

result in the failure of the mission. This implies that the location of each replica is
also critical to the fault tolerance of the mission. We analyze how the fault tolerance
property of a given f t_unit changes across three different deployment contexts.

• Different physical hosts within a cluster. Replicas of a mission task are assigned
to different hosts that are connected in a LAN. This deployment provides benefits
in terms of low latency and high bandwidth but offers very fault tolerance. For
example, a single switch failure may prevent the replicas from communicating
with one other, and as a consequence, the consistency protocol cannot be
executed.

• Different clusters within a data center. Replicas of a mission task are assigned
to hosts that belong to different clusters within the same data center. This
deployment provides moderate benefits in terms of latency and bandwidth, and
offers higher fault tolerance.

• Multiple data centers. Replicas of a mission task are assigned to hosts that belong
to different data centers. This deployment reduces the performance of the mission
with respect to network latency, but offers a very high level of fault tolerance.

As the values of most low-level parameters (e.g., MTBF, MTTR) of hardware and
system software are normally vendor-confidential, the work presented in [8] uses the
data published in [14, 15] to determine the overall availability provided by various
f t_unit’s for different configurations and deployment schemes. In particular, the
results from Markov model analysis are combined with the notion of deployment
levels using hierarchical fault trees for server failures. We observe from the results
that the availability of missions is higher when replicas are placed in two different
data centers. The value is slightly lower for the deployment level where replicas
are placed in different clusters within a data center and still lower when replicas
are placed inside the same cluster. The overall availability obtained by semi-
active replication is slightly higher than semi-passive replication, whereas passive
replication appears to be the worst.

This analysis allows a service provider to identify the placement conditions
inherent to each f t_unit. Such conditions can be specified in the form of fault
tolerance constraints, that are then taken into account while deploying mission tasks
in the infrastructure (e.g., using the technique in Section 3). Examples of fault
tolerance constraints are as follows [16].

• Restriction. The service provider may require that task replicas be located within
a subset of hosts in the infrastructure (e.g., a cluster or data center). Such
requirement naturally arises when a deployment context is chosen (e.g., place
two replicas of a task in different clusters within a data center). To satisfy such
requirements, the service provider can use a restriction constraint that limits a
task ti ∈ T to being allocated only on a specified group of physical hosts H ⊂H .
When the set Restrict = {(ti,Hj) | ti ∈ T ∧Hj ⊂H } is defined, the allocation
function a : T →H must ensure the following:

(
∀ti ∈ T,Hj ∈ 2H

)
((ti,Hj) ∈ Restrict =⇒ a(ti) ∈ Hj) (11)

Securing Mission-Centric Operations in the Cloud 257

• Forbid. The service provider may need to specify that the allocation function
must not deploy a given task on a subset of hosts. For example, if tasks t1 and t2
must be allocated on two different clusters C1 and C2, it is sufficient to restrict
one task to one of the two clusters and forbid the other task from being deployed
in the same cluster. Therefore, when the service provider defines a set Forbid =
{(ti,Hj) | ti ∈ T ∧Hj ⊂H } specifying that task ti must be forbidden from being
allocated on hosts in Hj, the allocation function must satisfy the following:

(
∀ti ∈ T,Hj ∈ 2H

)
(ti,Hj) ∈ Forbid =⇒ (a(ti) /∈ Hj) (12)

• Network latency threshold. To balance the performance of the mission, the
service provider may want to allocate task replicas ti, t j ∈ T such that the network
latency between them is below a given threshold δ . In this case, the service
provider can define a set Latency = {(ti, t j,δ) | ti, t j ∈ T)∧ δ ∈ R

+}, and the
allocation function a : T →H must satisfy the following:

(∀t j ∈ T, t j ∈ T) ((ti, t j,δ) ∈ Latency =⇒ latency(a(ti),a(t j))≤ δ) (13)

We assume that the service provider realizes a range of fault tolerance mecha-
nisms as f t_unit’s and estimates the overall reliability and availability that can be
achieved using each f t_unit with different configurations and deployment schemes.
Let U be the set of possible f t_unit’s applicable to the system. For a given
user request, first, the set U ′ ⊆ U of f t_unit’s that satisfy the abstract property
requirements is derived. Any u∈U ′ can be used to deliver the desired fault tolerance
properties if there are no additional constraints on cost or performance. However,
since users may specify constraints on attributes in A, a second set U ′′ ⊆ U ′ of
modules is defined by only including those modules in U ′ that satisfy the additional
constraints. For instance, a user may specify that the value of a given attribute a∈ A
must be above a given threshold. Finally, modules in U ′′ are ordered with respect to
users’ requirements. The first f t_unit in the ordered set U ′′ can be selected as the
most appropriate fault tolerance module.

Delivering comprehensive fault tolerance solutions. Although an f t_unit can
serve as the fundamental fault tolerance module, a comprehensive solution f t_sol
can be obtained by combining a set of f t_unit’s in a specific execution logic. For
example, a heartbeat test (f t_unit1) can be applied only after a mission task is
replicated on multiple hosts (f t_unit2), and a recovery mechanism (f t_unit3) can
be applied only after a failure is detected. Therefore, using the above matching
process, the service provider first designs a comprehensive fault tolerance solution
f t_sol and applies it to the mission tasks. Note that by using f t_unit’s to deliver
a comprehensive solution, the extent of the fault tolerance support can be changed
dynamically. In other words, the fault tolerance properties applied on a mission task
can be dynamically changed based on the business needs. For instance, a robust

258 M. Albanese et al.

failure detection mechanism can be replaced with a less robust one. Furthermore,
by designing an f t_unit to be configurable at runtime, resource consumption and
costs can be controlled.

The service provider starts monitoring the service once an f t_sol is applied to
a mission. Runtime monitoring is critical for efficient service delivery since the
context and attribute values of a fault tolerance solution may change at runtime
due to the dynamic nature of the Cloud computing environment. To achieve this,
the service provider first defines a set of rules over attributes a ∈ A such that
the validity of every rule establishes that property p is supported by the fault
tolerance solution. For instance, given an f t_sol s1 that satisfies property p1 =
(s1,availability = 98%,{mechanism = active_replication, f ailure_detection =
heartbeat_test,max_recovery_time = 25ms, level = 3}), the set of rules that can
test the validity of p1 can be defined as:

• r1 : no_o f _server_instances≥ 3
• r2 : heartbeat_test_ f requency = 5ms
• r3 : recovery_time≤ 25ms

In this context, the task of the service provider is to monitor the attribute values
of each f t_sol at runtime, and verify the corresponding set of rules to ensure that
missions requirements are satisfied.

6 Conclusions

In this chapter, we highlighted that existing solutions do not suitably address users’
security and fault tolerance concerns in the Cloud computing scenario. We then
showed how our work can address some of these limitations, although some issues
still remain open.

Specifically, we formulated the mission deployment problem as a security-
oriented task allocation problem, and proposed a solution aimed at minimizing
a mission’s exposure to vulnerabilities. In order to define a more comprehensive
solution, and provide better availability and fault tolerance guarantees to missions,
we discussed an efficient approach to effective network hardening. Finally, we
discussed how to offer fault tolerance as a service to missions.

In addition to the open issues already discussed throughout the chapter, another
important issue that needs to be addressed is the ability to automatically respond
to incidents at runtime in order to salvage missions that may have already been
compromised by those incidents.

Acknowledgements The work presented in this chapter has been supported in part by the Office of
Naval Research under award number N00014-12-1-0461, by Italian Ministry of Research within
PRIN project “GenData 2020” (2010RTFWBH), and by the European Union under Integrated
Project FP7-SEC-2012-312797 ABC gates for Europe.

Securing Mission-Centric Operations in the Cloud 259

References

1. P. Samarati and S. De Capitani di Vimercati, “Data protection in outsourcing scenarios: Issues
and directions,” in Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2010), Beijing, China, April 2010, pp. 1–14.

2. M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-effective network hardening
using attack graphs,” in Proceedings of the 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012), Boston, MA, USA, June 2012.

3. V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing, “Ranking attack graphs,” in Proceedings
of the 9th International Symposium On Recent Advances In Intrusion Detection (RAID 2006),
ser. Lecture Notes in Computer Science, vol. 4219, Hamburg, Germany, September 2006,
pp. 127–144.

4. P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 371–386, May 2011.

5. G. Jakobson, “Mission cyber security situation assessment using impact dependency graphs,”
in Proceedings of the 14th International Conference on Information Fusion (FUSION),
Chicago, IL, USA, July 2011.

6. K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hardware reliability,” in
Proceedings of the 1st ACM Symposium on Cloud Computing, Indianapolis, IN, USA, 2010,
pp. 93–204.

7. P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: Measure-
ment, analysis, and implications,” in Proceedings of the ACM SIGCOMM 2011, Toronto, ON,
Canada, August 2011, pp. 350–361.

8. R. Jhawar and V. Piuri, “Fault tolerance management in iaas clouds,” in Proceedings of the
IEEE First AESS European Conference on Satellite Telecommunications (ESTEL 2012), Rome,
Italy, October 2012.

9. D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and analysis of a virtualized
system,” in Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC 2009), Shanghai, China, November 2009, pp. 365–371.

10. M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Reliable mission deployment in vulnerable
distributed systems,” in Proceedings of the 43rd IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W 2013), Budapest, Hungary, June 2013.

11. M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A security analysis of
amazon’s elastic compute cloud service,” in Proceedings of the 27th Annual ACM Symposium
on Applied Computing (SAC 2012), 2012, pp. 1427–1434.

12. R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management in cloud computing:
A system-level perspective,” IEEE Systems Journal, vol. 7, no. 2, pp. 288–297, June 2012.

13. B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Remus: High
availability via asynchronous virtual machine replication,” in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2008). San Francisco,
CA, USA: USENIX Association, 2008, pp. 161–174.

14. W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability analysis of blade server
systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621–640, 2008.

15. A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability in cloud computing
slas,” in Proceedings of the 12th IEEE/ACM International Conference on Grid Computing
(GRID 2011), Lyon, France, September 2011, pp. 129–136.

16. R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements for resource man-
agement in cloud computing,” in Proceedings of the 15th IEEE International Conference
on Computational Science and Engineering (CSE 2012), Paphos, Cyprus, December 2012,
pp. 170–177.

Computational Decoys for Cloud Security

Georgios Kontaxis, Michalis Polychronakis, and Angelos D. Keromytis

Abstract Cloud-based applications benefit from the scalability and efficiency
offered by server consolidation and shared facilities. However, the shared nature
of cloud infrastructures may introduce threats stemming from the co-location
and combination of untrusted components, in addition to typical risks due to the
inevitable presence of weaknesses in the infrastructure itself. As a result, adversaries
may be able to place themselves in monitoring proximity to high-value targets
and gain unauthorized access to sensitive data. In this paper we present DIGIT,
a system that employs decoy computation to impede the ability of adversaries to
take advantage of unauthorized access to sensitive information. DIGIT introduces
uncertainly as to which data and computation is legitimate by generating a mix
of real and decoy activity within a cloud application. Although DIGIT may not
impede intruders indefinitely, it prevents them from determining whether a captured
system is handling actual or bogus processing within a reasonable amount of time.
As adversaries cannot easily distinguish between real and decoy activity, they have
to either risk triggering beacon-bearing data that can be traced back to them, or
expend significant effort to pinpoint any actual data of interest, forcing them to
reveal their presence.

1 Introduction

The multifaceted benefits of cloud computing have led to its rapid adoption for
the deployment of online services and applications. As businesses and individuals
increasingly rely on the cloud, the threat of unauthorized data access or full
compromise of cloud services becomes more pertinent. The recent spate of security
breaches in major online services [1–3, 6, 13, 25, 29] is indicative, and shows that

G. Kontaxis (�) • M. Polychronakis • A.D. Keromytis
Network Security Laboratory, Columbia University, New York, NY, USA
e-mail: kontaxis@cs.columbia.edu; mikepo@cs.columbia.edu; angelos@cs.columbia.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__12,
© Springer Science+Business Media New York 2014

261

mailto:kontaxis@cs.columbia.edu
mailto:mikepo@cs.columbia.edu
mailto:angelos@cs.columbia.edu

262 G. Kontaxis et al.

despite major advances in security research and engineering, vulnerabilities in soft-
ware components, protocol design, system configuration, operational procedures,
and other aspects of complex systems will continue to put cloud-based applications
at risk.

The increasing sophistication of attack methods and exploitation techniques
has shown that even the latest protection techniques can be bypassed, and the
most up-to-date detection systems can be evaded. The added need of defending
against tenants who have legitimate access but behave maliciously against other
users of the same cloud service increases the complexity of the problem [23]. This
situation necessitates the implementation of domain-specific “defense in depth”
strategies that combine multiple and diverse security measures. Prior research on
cloud security has focused on various aspects of cloud infrastructures, including data
and network isolation [20], software attestation [11], and data availability [10, 16].
Although most research efforts have focused on systems and methods for hardening
cloud-based systems and enabling the detection and prevention of security incidents,
less attention has been given to “second-line” defenses for hindering attackers that
have managed to gain access to parts of a system, or insider threats.

In this work we propose the concept of computational decoys, a novel approach
that encompasses deceptive information and “throw-away” computation to impede
the ability of an adversary to take advantage of any initial success they may have in
compromising a system. The main goal of our approach is to introduce uncertainty
as to the validity and authenticity of data captured by an adversary after gaining
unauthorized access in one or more hosts, and in some scenarios, reveal the presence
of the adversary.

We have applied this approach in DIGIT, a deceptive information generation,
injection, and tracking system aimed at detecting and confusing adversaries in cloud
settings. The system is based on a large number of application replicas, some of
which (the “deception set”) are provided with fake inputs. An adversary controlling
a malicious or compromised replica will be uncertain as to the validity of any
captured data. The whole process is orchestrated by an application-level proxy
that mixes and dispatches real and fake requests to primary and decoy application
replicas, respectively. Primary and decoy replicas can be swapped at any time simply
by changing the source of inputs, increasing the confusion to potential adversaries.

A key aspect of the proposed mechanism is the believability of the generated
decoy traffic, and consequently the fidelity of the evoked computation on a decoy
replica. Enticing decoy traffic is generated automatically based on real client
traffic using context-aware protocol field randomization. The generated inputs can
contain specially crafted data whose misuse by an adversary can be subsequently
detected. Examples of such enticing bait information include documents with built-
in “beacons,” URLs or credentials to honeypots or sites whose access can be directly
or indirectly monitored, credit card and bank account numbers with triggers, and so
on [8,9]. Other types of decoy information that we propose to use include deceptive
documents in the file system and entries in database tables (or entire databases)—
the exact type of bait used depends on the application. Besides application-level

Computational Decoys for Cloud Security 263

protocols, deceptive computation can be introduced at different levels, e.g., by
simulating user activity at a higher level through the generation of key strokes and
mouse input operations.

2 Threat Model

Our threat model revolves around a cloud computing environment where partitioned
applications handle data-oriented user requests. We consider adversaries that have
infiltrated one or more but not all server instances or modules of a cloud application,
and have the ability to monitor the execution of the server program as well as
its data flows, including user requests and program responses. We assume that, in
case more than one cloud instances have been breached, adversaries may correlate
information received from different back-end points. However, adversaries do not
have the ability to simultaneously monitor network traffic both inside and at the
edges of the cloud. This means that adversaries cannot determine whether a specific
connection comes directly from the outside, or originates from a cloud-local proxy.

Finally, we consider that the amount of data collected in a production envi-
ronment prohibits efficient analysis by humans within a realistic time frame.
Therefore, we assume that an adversary’s efforts to verify the quality of captured
information are automated and rely on behavioral heuristics as well as grammatical
and statistical analysis of the data rather than human interpretation of the content and
context of the collected information. Note that server instances are oblivious to the
use of computational decoys, and thus cannot hint an attacker as to their existence.
Any access of decoy information by an attacker will lead to an alert signaling the
breach, as well as to the immediate identification of the breached instance, as decoys
are unique to the environment in which they have been deployed and their recipient.

3 Design

In this section we present the design of our application-level system that uses
computational decoys to deceive an infiltrating adversary stealing information. Our
design can be overlaid on top of existing infrastructures without rearranging the
production environment. Figure 1 illustrates the modular structure of our proposed
system and presents the data relationships within the system itself, as well as the
exchange of flows within a cloud-computing setup.

A set of application replicas with identical functionality as the original appli-
cation servers and components receives decoy requests. All requests to application
replicas are handled normally, as if they were real, resulting in decoy computation
and system activities indistinguishable from those of real application instances.
The main component of DIGIT is placed at the edge of the cloud where a
typical SSL terminator or load balancer typically terminates user connections.

264 G. Kontaxis et al.

This choice is made for two main reasons: first, the system must be interposed in
the communication of clients with the cloud, and second, this placement enables
the system to acquire a high-level view of the application instances operating at any
given time. The overall operation of the system consists of four stages: incoming
traffic interception and classification, decoy generation, decoy dissemination, and
outgoing traffic reconciliation.

Application-level
Traffic

Interceptor

R, R’, R’’, R’’’, ...

Legitimate-Decoy
Traffic Mix

Incoming
Application Traffic

(requests)

Outgoing
Application Traffic

(responses)

Decoy Traffic
Generation Application Server

Replica 1

Application Server
Replica n

Application Server
Replica 3

Application Server
Replica 2

R’’

R’’’
R

R’

P

P’

P’’’
P’

P, P’, P’’, P’’’, ...

(Decoy) Traffic
Dissemination

(Decoy) Traffic
Reconciliation

P

R

Fig. 1 High-level overview of DIGIT’s architecture. DIGIT is designed as an overlay on top of
existing cloud infrastructures, and consists of an application-level traffic interception and decoy
generation system, and application replicas with identical functionality as the original application
servers and components. The modular design of the system allows it to be easily extended with
support for more applications (application-level traffic interception) and evolve the quality of the
decoys (decoy generation)

Initially, the system intercepts and identifies the type of incoming application
traffic. The type is defined as the combination of application protocol (e.g., HTTP)
and target application (e.g., messages targeting the end points of an e-commerce
site). Recognizing the type of incoming traffic is necessary for proceeding with
traffic analysis and the generation of decoys tailored to the particular application.
Traffic interception, shown in the center part of Fig. 1, is organized around a series
of application-specific modules that register traffic filters with the core interceptor
module. Upon a match with one of these filters, the appropriate module is called and
the system forwards any related incoming traffic to the analysis module.

That analysis module is aware of the application protocol and identifies specific
messages to provide the necessary context to the decoy generation modules.
The analysis phase takes into account context-specific information such as client
sessions. The output of the analysis phase consists of an application and message
specific template which will be used for decoy generation. Although we aim at
producing such templates in real time, an administrator can provide them based
on protocol specifications of a specific application. In that case, the output of the
analysis phase is a reference containing a specific template for use towards the decoy
generation component.

Computational Decoys for Cloud Security 265

The decoy generation component receives message templates (and optionally
context-related information) and produces decoy messages that are required to be
indistinguishable from the original message when they reach an application server
instance. To do so it follows a generation-evaluation cycle that can be extended to
be reactive to feedback from the evaluation phase.

The decoy dissemination component follows decoy generation and utilizes
knowledge about the setup of a cloud environment to distribute decoys and
legitimate messages among the instances of an application server. It makes no
assumptions about the status of an application, e.g., whether it is compromised or
not. It may take into account information from the load balancer so as to distribute
decoys and legitimate messages in a manner similar to the load balancer’s intended
behavior.

Finally, the decoy reconciliation component receives responses to the decoy and
legitimate requests from the application instances, discards the decoy responses, and
forwards the legitimate responses to the client. Optionally, if copies of the legitimate
message were given to more than one instances, it attempts to synthesize a consistent
view of the appropriate response through the formation of a response consensus.

3.1 Security Model

Although DIGIT does not assume anything about the security of the cloud in which
it operates, there should be security guarantees about its own components. The
DIGIT proxy and its associated components should be protected against remote
attacks from an adversary. This is analogous to the protection offered by a trusted
platform module (TPM) [30] in single-system computing. As long as the TPM itself
remains secure it can be effective in its role as a crypto-system.

3.2 Target Integration

Considering DIGIT as a gateway component in a cloud setup is only our initial
approach. Effectiveness and scalability factors drive the question whether DIGIT
could be realized closer to the actual system it protects. It would be interesting
to investigate whether hardware, hypervisor or even application-driven approaches
could introduce deceptive computation.

4 Decoy Generation

The key challenge in generating decoy traffic is that it should appear realistic
and indistinguishable from actual user-generated traffic. We aim to satisfy this
requirement based on the assumption that an attacker has a limited view of the cloud

266 G. Kontaxis et al.

infrastructure and controls and monitors the behavior of a subset of the application
server instances. Our goal is for decoy requests to carry the same properties as
the actual user input and make the server to behave in the same way. We assume
that actual and decoy computation on an application replica is the same as long as,
given a real and a corresponding decoy request, similar or identical code execution
paths are followed. Currently, we do not place any context-related constraints (e.g.,
a series of valid protocol messages or application requests that a user would be
unlikely to perform in a specific order) as we assume that an attacker would
not attempt to distinguish decoys in such manner. However, our approach can be
extended to include more decoy evaluation heuristics.

R

Incoming
Application Traffic

(requests)

Decoy Traffic
Store

Instrumented
Application Server

Context-Aware
Application

Traffic
Randomizer

R

R’’

R’ Control-flow
Similarity Grouping

<R, CFG>

<R’, CFG’>

<R’’, CFG’’>

<R, R’’’>

R’

Fig. 2 Decoy traffic generation based on an (optionally feedback-assisted) generation-evaluation
approach. As more evaluation heuristics become available, the quality of generated decoys can
adapt to actual user traffic. Decoy messages that achieve high fidelity are stored in a database for
future use

Figure 2 presents the process of generating realistic computational decoys. Decoy
generation begins with a set of templates for protocol messages generated by
popular client applications (e.g., web browsers). Templates are used to generate
random permutations in the acceptable value space for the parameters or content of
a given message type. For instance, if the message is an HTTP GET request carrying
the “PIN” parameter with a space of four numeric characters ([0–9]{4}) the system
would generate all permutations. Alternatively, for a “search_word” parameter with
a space defined by a dictionary of the English language we would generate an
appropriate number of decoys or enough realistic decoys to satisfy a given quota.

The system then evaluates all generated decoys against the actual user input from
a training set using the heuristics mentioned above. Decoy messages that exhibit
similar or identical application server behavior are kept, while the rest are discarded.
As dynamic binary instrumentation is computationally expensive, we make a time-
space trade-off and store the produced decoys for future use rather than carry out
real-time generation and evaluation.

4.1 Early Prototype

To assess our decoy generation approach we have implemented as an early prototype
the common scenario of web applications in a cloud environment. The focus of our
prototype is the automated generation of HTTP message decoys, an effort which is

Computational Decoys for Cloud Security 267

expected to act as a guideline on practical requirements in system components and
procedures so that we may adjust our design if necessary.

Our HTTP server is Lighttpd, which uses a single-threaded queue-based work-
flow for processing user requests. We chose this server due to its simpler control flow
compared to multi-threaded event-based server implementations, which enables us
to create more easily compare the control flow graphs of real and decoy executions.
In a production environment, an attacker might have to deal with the complexity
introduced by multi-threaded event-based servers when trying to identify abnormal
execution behavior.

We implemented a tool for the Pin dynamic binary instrumentation framework
[19] to output the control flow graph of Lighttpd, initially at the function level, and
later at the basic block level. The tool runs twice for the same legitimate user input,
in our case an HTTP GET request, to identify the invariant parts of the control
flow graph. We then run the tool for each generated decoy and compare the output
graph to the invariant graph of the legitimate input to decide which variations of the
original input qualify as realistic decoys.

Our example scenario consists of a simple service that handles single-keyword
dictionary queries. The application returns an HTTP 404 “Not Found” status code
and no content for queries with a keyword not contained in a pre-defined dictionary,
and an HTTP 200 status and the relevant content for matching keywords. Our
goal was to generate and evaluate decoys based only on the knowledge that the
application expected HTTP GET requests that carried a parameter named “query,”
and that the parameter accepted input of arbitrary length in the character space a–
z. Overall, assuming zero knowledge about the internals of the web application, we
were able to produce decoy inputs that returned valid HTTP status codes and content
given user inputs with the same behavior.

5 Related Work

The concept of deception in the context of computer systems and networks, with the
aim to mislead intruders and reveal their presence and actions, has been applied in
many variations and at multiple levels [24, 34].

The use of diversionary mechanisms for inducing intruders to spend precious
time on non-essential part of a system, and eventually reveal their presence has
been considered since the days of mainframe computers. Early proposals included
the insertion of pseudo-flaws in existing system components and the installation of
entrapment modules [17].

Fully-blown computer traps purposely set up and heavily monitored by security
administrators to lure prospective intruders are widely known as honeypots [21,
22, 26, 28]. Honeypots do not have any legitimate users and do not provide any
regular production service. Therefore, under normal conditions they should remain
idle, neither receiving nor generating any traffic, or generating any other activity.
Shadow honeypots [4] combine honeypots with network-level anomaly detection
mechanisms to enable their integration with production systems.

268 G. Kontaxis et al.

Besides decoy systems or system components, the use of decoy information can
also confuse intruders and unveil their actions. Decoys may consist of bogus medical
records, credit card numbers, credentials, and other bait data relevant to each case,
also known as honeytokens [27] or honeyfiles [33]. When a bait file is stolen and
later accessed, it can transparently send an alert that reveals the location of the
action. Bowen et al. have proposed techniques for generating believable decoys
indistinguishable from actual data at the network and host level [8, 9]. They do
so by capturing real-user actions in a production environment, such as opening
documents and browsing the web, and then replaying within virtual machines to
simulate the presence of a human operator, thus making them more believable to
an infiltrating adversary. Bojinov et al. [7] propose a methodology for generating
password decoys that closely resemble the ones of a particular user. To do so
they analyze the grammatical properties of each password, output corresponding
templates and use them to generate similar, thus realistic, passwords.

Currently, our system uses protocol message templates to generate realisti-
cally looking application traffic and activity. However, several techniques for
automatically extracting protocol specifications from their corresponding imple-
mentations [5,18,32], or protocol messages [12,14,15] can also be employed. Wang
et al. [31] have employed differential black-box protocol analysis to uncover the
syntax and semantics of application-level single-sign-on protocols. They are thus
able to automatically identify message attributes that are unique to the session, user
or device as well as integrity-verification fields, parameter propagation chains and
authentication-enabling secrets.

6 Conclusion

In this paper we have presented our work on DIGIT, a system which employs
computational decoys to introduce uncertainty and deceive an adversary who has
infiltrated a cloud setup for stealing user information. Our design can be overlaid
on top of an existing infrastructure which remains agnostic to the use of decoys.
We generate realistic application-specific decoys by requiring that they carry the
same properties and result in the same behavior by the server instance located at the
back-end of the cloud.

References

1. Hacker Posts 6.4 Million LinkedIn Passwords. http://www.technewsdaily.com/7839-linked-
passwords-hack.html. December 2012.

2. Sony Hacked Again, 1 Million Passwords Exposed. http://www.informationweek.com/
security/attacks/sony-hacked-again-1-million-passwords-ex/229900111.

3. Twitter detects and shuts down password data hack in progress. http://arstechnica.com/security/
2013/02/twitter-detects-and-shuts-down-password-data-hack-in-progress/. February 2013.

http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-passwords-ex/229900111
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-passwords-ex/229900111
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-data-hack-in-progress/
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-data-hack-in-progress/

Computational Decoys for Cloud Security 269

4. Kostas G. Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Kostas Xinidis, Evangelos P.
Markatos, and Angelos D. Keromytis. Detecting Targeted Attacks Using Shadow Honeypots.
In Proceedings of the 14th USENIX Security Symposium, pages 129–144, August 2005.

5. Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek Saxena, Jun
Sun, Yang Liu, and Jin Song Dong. AUTHSCAN: Automatic extraction of web authentication
protocols from implementations. In Proceedings of the 20th Network and Distributed Systems
Security Symposium (NDSS), 2013.

6. H. Berghel. Identity theft and financial fraud: Some strangeness in the proportions. Computer,
45(1):86–89, Jan. 2012.

7. Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. Kamouflage: Loss-resistant
password management. In Proc. of ESORICS’10, 2010.

8. Brian M. Bowen, Vasileios P. Kemerlis, Pratap V. Prabhu, Angelos D. Keromytis, and
Salvatore J. Stolfo. A system for generating and injecting indistinguishable network decoys.
Journal of Computer Security, 20(2–3):199–221, 2012.

9. Brian M. Bowen, Pratap Prabhu, Vasileios P. Kemerlis, Stelios Sidiroglou, Angelos D.
Keromytis, and Salvatore J. Stolfo. Botswindler: tamper resistant injection of believable decoys
in vm-based hosts for crimeware detection. In Proceedings of the 13th international conference
on Recent advances in intrusion detection, RAID’10, pages 118–137, Berlin, Heidelberg, 2010.
Springer-Verlag.

10. Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL: a High-Availability and Integrity Layer
for Cloud Storage. In Proc. of CCS, pages 187–198, 2009.

11. Andrew Brown and Jeff Chase. Trusted Platform-as-a-Service: A Foundation for Trustworthy
Cloud-Hosted Applications. In Proc. of CCSW, 2011.

12. Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda. Prospex:
Protocol specification extraction. In Proceedings of the 30th IEEE Symposium on Security and
Privacy, pages 110–125, 2009.

13. Computerworld. Microsoft BPOS cloud service hit with data breach, Dec 2010. http://
www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_
breach.

14. Weidong Cui, Vern Paxson, Nicholas C. Weaver, and Y H. Katz. Protocol-independent adaptive
replay of application dialog. In Proceedings of the 13th Network and Distributed System
Security Symposium (NDSS), 2006.

15. Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, and Robin Sommer. Dynamic
application-layer protocol analysis for network intrusion detection. In Proceedings of the 15th
USENIX Security Symposium, 2006.

16. Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic
provable data possession. In Proceedings of the 16th ACM conference on Computer and
Communications Security (CCS), pages 213–222, 2009.

17. Dennis Hollingsworth. Enhancing computer system security. Technical Report P-5064, RAND
Corporation, Aug 1973.

18. Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Automatic protocol format
reverse engineering through context-aware monitored execution. In Proceedings of the 15th
Network and Distributed System Security Symposium (NDSS), 2008.

19. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

20. Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. SilverLine: Data and Network
Isolation for Cloud Services. In Proc. of HotCloud, 2011.

21. Niels Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX Security
Symposium, pages 1–14, August 2004.

22. Niels Provos and Thorsten Holz. Virtual honeypots: from botnet tracking to intrusion detection.
Addison-Wesley Professional, 2007.

http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach

270 G. Kontaxis et al.

23. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In Proc. of CCS,
pages 199–212, 2009.

24. Neil C. Rowe and Hy S. Rothstein. Two taxonomies of deception for attacks on information
systems. Journal of Information Warfare, 3(2):27–39, 2004.

25. Sophos. Groupon subsidiary leaks 300k logins, fixes fail, fails again, 2011 Jun. http://
nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-
again/.

26. Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing Co., Inc.,
2002.

27. Lance Spitzner. Honeytokens: The other honeypot, Jul 2003. http://www.symantec.com/
connect/articles/honeytokens-other-honeypot.

28. Clifford Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):484–497, 1988.
29. The Wall Street Journal. Google Discloses Privacy Glitch, 2009 Mar. http://blogs.wsj.com/

digits/2009/03/08/1214/.
30. Trusted Computing Group. TPM Main Specification. http://www.trustedcomputinggroup.org/

resources/tpm_main_specification.
31. Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts through facebook

and google: A traffic-guided security study of commercially deployed single-sign-on web
services. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
pages 365–379, Washington, DC, USA, 2012. IEEE Computer Society.

32. Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and Engin Kirda. Auto-
matic network protocol analysis. In Proceedings of the 15th Network and Distributed System
Security Symposium (NDSS), 2008.

33. J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles: Deceptive files for intrusion detection.
In Proceedings of the 5th IEEE Workshop on Information Assurance, pages 116–122, Jun 2004.

34. Jim Yuill, Dorothy Denning, and Fred Feer. Using deception to hide things from hackers:
Processes, principles, and techniques. Journal of Information Warfare, 5(3):26–40, 2006.

http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-fail-fails-again/
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Towards a Data-Centric Approach
to Attribution in the Cloud

Wenchao Zhou

Abstract With an increasing number of applications being mirgrated to cloud, it
becomes evident that faults in these applications or the underlying cloud platform
can be costly. In cases where a system fault occurs, administrators often find
themselves needing to answer attribution questions, to perform a variety of man-
agerial tasks including system debugging, accountability enforcement, and attack
analysis. In this chapter, we propose Secure Time-Aware Provenance (STAP), a data-
centric approach that provides the fundamental functionality required to answer
such attribution questions—the capability to “explain” the existence (or change)
of a certain distributed system state at a given time in a potentially adversarial
environment.

The proposed STAP model allows consistent and complete explanations of
system state (and changes) in dynamic environments, and can be efficiently main-
tained and queried even in potentially adversarial environments. STAP incorporates
tamper-evident properties, and guarantees eventual detection of compromised nodes
that lie or falsely implicate correct nodes.

1 Introduction

The past few years have witnessed the success of cloud computing. An increasing
number of applications and services being migrated and outsourced to cloud,
and it becomes evident that faults in these applications or the underlying cloud
platform can be costly. In cases where a system fault occurs, administrators of
cloud applications may find themselves needing to answer attribution questions,

W. Zhou (�)
Georgetown University, 37th & O St., Washington, DC, USA
e-mail: wzhou@cs.georgetown.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__13,
© Springer Science+Business Media New York 2014

271

mailto:wzhou@cs.georgetown.edu

272 W. Zhou

to understand why and how a system execution reaches a certain state, and who
should be responsible for unexpected system faults. Such examples include, but are
not limited to, the following scenarios:

• System debugging. A detected system fault in a system execution may indicate
a subtle yet critical bug in the design or the implementation. The system
designer would greatly benefit from knowing the execution trace that led to this
unexpected state, and the ability to reconstruct it for debugging purposes.

• Accountability. In a deployment that crosses multiple administrative domains,
each of the participating parties may act to maximize its own benefit regardless
the (potentially negative) impact on the global system. Attribution questions
that are answered in a collective and secure fashion are useful to enforce
accountability—the ability to hold the parties to be accountable to their oper-
ations and outputs to the global system.

• Attack analysis—root cause analysis. In cases where a cloud application is
under an ongoing attack, the operators must decide the root causes (e.g., intrusion
by a malicious user) from the symptom (e.g., unavailability of the service
provided by the cloud application), before they can take appropriate actions.

• Attack analysis—damage assessment. On the other hand, if an attack has been
discovered, the operators must then determine its effects (i.e., its damage to the
whole system), such as corrupted state on other nodes, so that the system can be
repaired and brought back to a correct state.

Composing answers to attribution questions is not an easy task; in fact, the
answers are often coupled with a particular combination of behaviors, both within
the network and at different applications, which can be hard to find. The key
challenge is to inspect the data flows, dependencies, and updates to distributed
(networked) nodes’ state—often in ways that are not predictable in advance.
Existing domain-specific solutions [16, 42, 79] often work by recording log data
at each node, e.g., a list of past routing changes, which are then used to answer
the administrator’s questions on demand. However, tailoring the schema and the
introspection mechanisms to each new application is cumbersome and inflexible.
It would be preferable to have a generic solution that can be applied to arbitrary
distributed systems.

1.1 The Provenance Approach

The approach that we propose in this chapter is to adopt a data-centric approach,
by constructing a distributed data structure called the provenance that, at a high
level, tracks how data flows through the system. Data provenance itself is not a
new concept—it has been extensively explored by the databases and the systems
community, and has proven to be a useful and practical concept. It has been

Towards a Data-Centric Approach to Attribution in the Cloud 273

successfully applied to a variety of areas, including probabilistic databases [7, 68,
82], collaborative databases [27], file systems [34,60,61], scientific workflow com-
putation [8, 11, 17, 63, 78], and cloud computing [36]. It is primarily used to answer
questions concerning how query or computation results are derived and which data
sources they come from. The capability of learning such information is essential to
answer the cause-and-effect questions, and, therefore, enables provenance to be a
promising approach for attribution in the cloud.

Backed by the provenance system, we can support a large variety of queries
to answer attribution questions. For instance, system administrators may use state
queries (“Why does a certain state τ exist?”), which explains the derivations of
system state at query time, for fault detection, history queries (“Why did τ exist
at a previous time t?”) for system debugging and accountability, dynamic queries
(“Why and how did τ (dis)appear?”) for root cause analysis, and causal queries
(“What state on other nodes was derived from τ?”), which explains which parts of
the system have been affected, for attack analysis and system recovery.

1.2 Research Challenges

To support the full range of functionality required for enabling attribution in the
cloud, there are a number of challenges arisen in (distributed) cloud systems: the
attribution query may ask for a state change that no longer exists; a state change
during query processing could result in inconsistency in the returned query results;
furthermore, if a system fault is induced by an attacker, the attacker can fabricate
plausible yet incorrect results. To support attribution queries in the cloud,

• We must be able to capture historical information about past states and inter-
actions within the systems, not just about the current state. Only maintaining
relationships among current state is not enough; historical provenance would
require recording relationships among entries in event logs.

• We must guarantee correct and complete provenance results even in transient
state. In reality, the state of a distributed system can be highly dynamic; there
can even exist instabilities or oscillations, for instance, a typical Internet router
can incur hundreds of updates per minute.

• We must have the ability to distribute the storage of the provenance to
keep communication costs down: for performance reasons, centrally archiving
the system’s entire provenance is impractical. This means that we also need
the ability to detect when nodes tamper with the provenance; otherwise, a
compromised node could cover its traces and avoid detection.

Several prior work has proposed solutions that attack these research challenges
individually. For instance, PASS [60] and several scientific workflow systems [8,
63,78] present solutions for historical provenance; Orchestra [27], PA-S3fs [61] and
RAMP [36] discuss distributed provenance maintenance and querying for specific

274 W. Zhou

applications; and Sprov [34] enforces the integrity of chain-structured provenance.
(Section 5 summarizes and discusses the related work in greater details.) This
chapter describes a comprehensive solution that addresses all the above research
challenges. We demonstrate that it is practical to develop a general-purpose
provenance system for the cloud, that provides attribution of system behavior even
in an untrusted and dynamic environment.

This chapter proposes and develops the foundations of Secure Time-aware
Provenance (STAP). STAP captures time, distribution, and dependencies of updates;
it enables the administrator of a distributed system to pose “ad hoc” queries over the
system’s prior states, communications patterns, event orderings, and more.

2 Provenance Model

As a basis for the introduction of the provenance model, we first introduce, in
Sect. 2.1 a distributed system model (based on distributed Datalog) and some basic
concepts that will be useful for our formal definitions. We then use this system
model to describe system execution traces in Sect. 2.2, and formalize the STAP
model in Sect. 2.3.

2.1 System Model

For ease of exposition, we adopt a simple, declarative system model. We consider
a distributed system that consists of a set of nodes N = {N1,N2, . . . ,Nn} that are
connected by a network and can communicate by sending messages. The state of
a node at a given point in time can be expressed as a set of tuples (typically with
fixed schemas). We model user input as tuples that are inserted or deleted directly
by users, and computations performed by the system as derivations of new tuples
from existing tuples. We say that a tuple is a base tuple if it was inserted directly by
a user; otherwise we say that it is a derived tuple. Derived tuples can be sent from
one node to another as messages.

We use Network Datalog (NDlog) [52–55], a distributed variant of Datalog, to
describe the possible derivations and dependencies among tuples that can exist in
the system. Such declarative language is expressive enough to specify a wide range
of application domains including cloud computing [1], sensor networks [9], overlay
network compositions [56], anonymity systems [75], mobile ad-hoc networks [49],
and wireless channel selection [48]. (However, it should be possible to apply
network provenance to distributed systems written in other languages, including
legacy systems, as long as the dependencies between incoming and outgoing tuples
can be modeled in a similar way; see, for example, [85, 87]).

Towards a Data-Centric Approach to Attribution in the Cloud 275

Example: Network Routing

For concreteness, we consider a simple MinCost protocol for network routing as
an example, in which the nodes compute the lowest-cost path between each pair of
nodes using the following NDlog rules:

mc1 cost(@S,D,C) :- link(@S,D,C).
mc2 cost(@S,D,C) :- link(@Z,S,C1), mincost(@Z,D,C2), C=C1+C2.
mc3 mincost(@S,D,MIN<C>) :- cost(@S,D,C).

a b

c
5

1
3

at time t2 > t1

a b

c
5 3

at time t1

Fig. 1 An example network,
where the best path between
node c and a changed at time
t2, due a change of the
network topology

As in traditional Datalog, each NDlog rule has the form p :- q1, q2, ..., qn.,
which can be read informally as “p should be derived whenever q1, q2, ..., and qn

all exist at the same time”. NDlog supports a location specifier in each predicate,
which is written as an @ symbol followed by the node on which the tuple resides. For
example, any cost tuples that are derived via rule mc1 should reside on the same
node as the corresponding link tuples, as both carry the same location specifier @S.

In this program, the base tuple link(@S,D,C) exists if node S has a direct link
to node D with cost C. The tuple cost(@S,D,C) is derived when S has a (possibly
indirect) path to D with total cost C, which can either be a direct link (mc1) or a path
through another node Z (mc2). Rule mc3 aggregates all paths with the same sources
and destinations to compute the minimal path cost. In NDlog, the protocol runs
continuously, and tuples can be derived or underived in response to changes to base
tuples. For instance, mincost tuples may be updated if the cost of a link changes,
since this can change the lowest-cost route.

2.2 Execution Traces

The execution of an NDlog program can be characterized by the sequence of events
that take place; we refer to this sequence as an execution trace. An execution
trace can be used to explain a derivation that occurred during the execution; we
can simply replay it and check which event triggered the derivation and which
conditions held at that time. A full trace can recursively explain all derivations;
if we are only interested in some specific derivations (e.g., the ones queried by the
network operator), a subtrace is generally sufficient.

Figure 1 shows an example scenario during the execution of the MinCost pro-
gram. At some past time t2, the network protocol changed its min-cost path between
node c and a in response to updated link information that claimed there existed

276 W. Zhou

a shorter path between the two nodes. Figure 2 shows a part of the corresponding
execution during which +mincost(c,a,4) is derived. The explanation for this event
consists of the following trace (event tuples are denoted in bold):

• At time t2@b, node b discovered a new link to node a and thus inserted the base
tuple +link(@b,a,1).

+link(@b,a,1) +cost(@b,a,1)

+mincost(@b,a,1) +cost(@c,a,4)
+mincost(@c,a,4)
-mincost(@c,a,5)

a

b

c

mc2mc3

mc3

t2@b t3@c Timeline

link(@b,c,3)+link(@b,c,3)
mc1

t0@b

Fig. 2 An execution subtrace of the MinCost program that corresponds to scenario in Fig. 1 and
provides an explanation of +mincost(@c,a,4). Rectangles indicate that a rule is fired, dashed
arrows indicate local event triggering, solid arrows indicate cross-node messages, and shaded
boxes indicate the conditions for events

• Rule mc1 was triggered by +link(@b,a,1), resulting in +cost(@b,a,1).
• Rule mc3 was used to derive +mincost(@b,a,1) from +cost(@b,a,1).
• Rule mc2 (specifically its delta rule d3) was triggered by +mincost(@b,c,1).

The condition was satisfied by the existing tuple link(@b,c,3) that had been
derived at time t0; the resulting update +cost(@c,a,4) was then shipped to c.

• At time t3@c, node c received +cost(@c,a,4) from node b and derived
+mincost(@c,a,4) using rule mc3, which then replaced the higher-cost
mincost(@c,a,5).

Note that the ordering of edges (arrows) in Fig. 2 reflects dependencies, in the form
of a happens-before relationship. For example, +link(@b,c,1) happens before
+cost(@b,a,1) as a result of executing rule mc1.

2.3 Provenance Model

In this section, we present a (slightly) simplified version of STAP that assumes a
trusted environment. We defer the discussion of STAP’s security enhancement for
untrusted environments to Sect. 4.

STAP encodes the provenance for a trace E in a graph G(E) = (V,E) in which
each vertex v ∈ V represents an event in E , and each edge (v1,v2) ∈ E represents a
direct dependency between two such events. STAP’s provenance graph can contain
the following six types of vertices:

• INSERT(t,n,τ) and DELETE(t,n,τ): Tuple τ was inserted (deleted) on node n at
time t.

Towards a Data-Centric Approach to Attribution in the Cloud 277

• DERIVE(t,n,R,τ) and UNDERIVE(t,n,R,τ): Tuple τ was derived (underived) via
rule R on node n at time t.

• SEND(t,n,�τ,n′) and RECEIVE(t,n′,�τ,n): An update �τ was sent (received)
on node n at time t to (from) node n′.

The last two vertices are needed because a derivation on one node can involve
tuples on another; the corresponding messages are represented explicitly in G. The
vertices are generated and connected according to the following rules:

DELETE(t3, c, mincost(@c,a,5))

INSERT(t3, c, cost(@c,a,4))

update
INSERT(t3, c, mincost(@c,a,4))

INSERT(t2, b, mincost(@b,a,1))INSERT(t0, b, link(@b,c,3))

……

SEND(t2, b, +cost(@c,a,4))

RECEIVE(t3, b, +cost(@c,a,4))

DERIVE(t2, b, mc2, cost(@c,a,4))

DERIVE(t2, b, mc3, mincost(@b,a,1))

DERIVE(t3, c, mc3, mincost(@c,a,4))

Fig. 3 The STAP provenance graph for explaining the deletion of mincost(@c,a,5)

• When a base tuple is inserted, an INSERT vertex is added.
• If a node Ni derives a tuple τ via rule r, a DERIVE vertex is added, which has

incoming edges from all of r’s preconditions, as well as from the triggering event,
i.e., the INSERT that caused r to fire. The DERIVE vertex is then connected to a new
INSERT vertex (if τ is local to Ni) or a new SEND vertex (if τ is sent to another
node).

• When a message is received from another node, a RECEIVE vertex is added,
with an incoming edge from the corresponding SEND vertex. This vertex is then
connected to a new INSERT vertex.

• Whenever an INSERT vertex is added for a tuple τ that already has at least one
derivation, an incoming edge is added to τ’s most recent INSERT vertex (recall
that tuples can have more than one derivation).

• When a tuple τ1 replaces another tuple τ2 due to a primary-key or aggregation
constraint, an update edge is added from τ1’s INSERT vertex to τ2’s DELETE vertex.

The guidelines for deletions and underivations are analogous. Note that the graph
is acyclic because edges are always added between an existing vertex and a new

278 W. Zhou

vertex, but never between two existing vertices. It is also monotonic because, as the
execution continues, new vertices and edges are added but never removed.

Given the instantiated provenance graph G(E), the provenance G(�τ,E) of an
update event �τ on node Ni at time t is simply the subtree of G(E) that is rooted
at the corresponding INSERT(t,Ni,τ) (or DELETE(t,Ni,τ)) vertex. Reference [88]
presents a formal correctness proof of the STAP model.

Example: MinCost Routing

We now revisit our running example from the previous sections. Figure 3 shows a
piece of the STAP graph that explains the deletion of the tuple mincost(@c,a,5)

on node c at time t3 that resulted from the new link a-c that was inserted at time
t0. Specifically, the edge at the DELETE vertex of mincost(@c,a,5) (indicated by
a dotted line) corresponds to an aggregation constraint—that is, the minimal cost
changed because a lower-cost path to node a became available. The updated lowest
cost (cost(@c,a,4)) was derived on node b at time t2 (and subsequently sent to
node c) because (a) a link b-c with cost three was inserted at time t0 (and remained
to exist at time t2), and (b) the tuple mincost(@b,a,1) was newly derived at t2
via rule mc3. The latter derivation was caused by the insertion of the base tuple
link(@b,a,1), which corresponds to the addition of the new link.

Note that the additional time dimension on the provenance graph enables another
use of provenance: querying the effects of an update event. For example, if we want
to determine how the insertion of the new link a-b has affected the system, we can
simply locate the corresponding INSERT vertex in the graph and traverse the edges in
the reverse direction.

3 Provenance Maintenance and Querying

In this section, we explore the generic data management challenges posed by
the distribution, querying, and maintenance of provenance in large-scale cloud
deployment. Such scale has presented a unique challenge to provenance data
management: applications in the cloud sometimes involve hundreds of nodes;
moreover, provenance computations are required to share resources with existing
cloud applications. Bandwidth efficiency and minimal impact on computation
overhead are of significant importance.

3.1 Storage Model

This section defines the storage model used by STAP to store and maintain
provenance in distributed systems. STAP’s graph-based data model is amenable to
storage using a distributed relational database, and is sufficiently general to be used
as a basis for generating other provenance representations.

Towards a Data-Centric Approach to Attribution in the Cloud 279

STAP stores the graph representation of provenance in a relational table in a
format similar to that used in existing work [23, 25]. STAP makes use of four
provenance tables—called prov, ruleExec, send, and recv—that are incremen-
tally updated as the derivation rules that model the protocols are executed. These
tables store STAP’s provenance graph in a distributed fashion.

Tuple instances: The prov table maintains information about each tuple (including
both current tuples and tuples that existed in the past) as well as the specific rule
that triggered its derivation. Entry prov(@N,VID,Time,RLoc,RID) indicates that
the tuple on node N with unique identifier VID was derived at time Time by a
rule execution on node RLoc that is uniquely identified by RID. If N and RLoc are
different, the tuple was sent from RLoc to N, and this communication is recorded
in additional recv and send entries (see below). VID is generated based on a
cryptographic hash of the contents of the tuple and the time of its derivation;
similarly, RID is a hash of the rule identifier, node location, and VID of the derived
tuple. For base tuples, RID is set to null, since they are not derived by any rule.

In order to correctly generate the above entries, NDlog programs undergo an
automatic rewrite process to include the RID and RLoc information with each tuple
derivation. This process ensures that the appropriate prov entry will be generated
on the node to which the derivation is sent.

Rule execution instances: The ruleExec table maintains information about each
execution of a rule (not just about each rule). Entry ruleExec(@RLoc, RID,Rule,

ExecTime,Event,CList) indicates the execution of a Rule on RLoc at ExecTime,
triggered by an event Event (i.e., a tuple that changed, appeared, or disappeared)
while the preconditions in CList were holding.

Message transmissions: The send and recv tables maintain information about
message exchanges. send(@Sender,VID,STime,RID) and recv(@Receiver,VID,
RTime,Sender,STime) refer to the rule execution identified by RID that affected
the tuple identified by VID; the corresponding message was sent by Sender at time
STime and received at time RTime. Whenever a rule execution causes a message to
be sent, send and recv entries are generated at the sender and receiver, respectively,
and are timestamped using nodes’ local clocks. To handle clock skew, the receiver
stores the sender’s timestamp at message transmission; this timestamp is included
in each message along with the (un)derived tuple. This information is used during
query processing to correctly match up send and recv entries.

Given the distributed nature of provenance storage, these tables are naturally
partitioned based on their first attributes, and distributed among the nodes.

Example Tables

Tables 1–3 show the entries for the tables above, based on the example provenance
tree shown in Fig. 3. The vertices defined by our provenance model (Sect. 2.3)
are encoded in the provenance tables as follows: INSERT and DELETE vertices

280 W. Zhou

Table 1 An example prov relation based on Fig. 3. The table is horizontally partitioned across all
nodes, based on the location specifier Loc. The last column is not stored in the table; it is included
here to show the derivation that corresponds to each entry. The first column indicates an insertion
(+) or a deletion (−)

+/− Loc VID Time RLoc RID Derivation

+ b V ID1 t0 null null +link(@b,c,3)
+ b V ID2 t2 null null +link(@b,a,1)
+ b V ID3 t2 b RID1 +mincost(@b,a,1)
+ c V ID4 t3 b RID2 +cost(@c,a,4)
+ c V ID5 t3 c RID3 +mincost(@c,a,4)
− c V ID6 t3 c RID3 -mincost(@c,a,5)

Table 2 An example ruleExec relation that corresponds to the DERIVE vertices. The last
column shows the derivation rule that was executed in each instance

+/− RLoc RID Rule ExecTime Event CList Derivation

+ b RID1 mc3 t2 V ID2 null +mincost(@b,a,1)
+ b RID2 mc2 t2 V ID2 (V ID1) +cost(@c,a,4)
+ c RID3 mc3 t3 V ID4 null +mincost(@c,a,4)

Table 3 Example send and recv relations that correspond to the SEND and RECEIVE vertices

Sender VID STime RID Derivation

b V ID4 t2 RID2 +cost(@c,a,4)

Receiver VID RTime Sender STime Derivation

c V ID4 t3 b t2 +cost(@c,a,4)

are respectively represented as tuple insertions (+prov) and deletions (-prov).
Likewise, DERIVE and UNDERIVE are stored as +ruleExec and -ruleExec. Edges
between INSERT/DERIVE and DELETE/UNDERIVE pairs are represented by the RID and
VID pairings in each prov entry. recv and send entries correspond to the RECV

and SEND vertices. For each tuple uniquely identified by its primary key, each EXIST

vertex consists of all updates (i.e., +prov and -prov) ordered by their timestamps.

3.2 Provenance Maintenance

The STAP graph can be captured via the evaluation of delta rules of the form action

:- event, conditions. In a delta rule of the form �p :- p1, . . .,�pi, . . . , pn, the
event (in this case,�pi) is represented as an INSERT or DELETE vertex, the conditions
(the other pk) are represented as a sequence of INSERT (or DELETE) vertices that
support the existence of pk (EXIST vertex), and the action (�p) is represented as
a DERIVE or UNDERIVE vertex. When a delta rule �p :- p1, . . .,�pi, . . . , pn is fired at
time t, STAP performs the following steps:

Towards a Data-Centric Approach to Attribution in the Cloud 281

• Generate a +ruleExec or -ruleExec tuple with timestamp t to represent the rule
execution, and maintain pointers to the triggering event �pi and preconditions
p1, . . . , pn (excluding pi).

• Generate a +prov or -prov tuple with timestamp t to represent the insertion
or deletion event �p, and to maintain a pointer to the generated +/-ruleExec

tuple.
• If the generated event �p needs to be sent to another node, generate a pair of

send and recv tuples at the sender and the receiver, respectively, with timestamps
that correspond to nodes’ local clocks.

• Finally, if the generated event �p results in a violation of a primary-key
or aggregation constraint (e.g., the newly-generated tuple displaces another),
generate an additional +prov or -prov tuple to represent the deletion caused
by�p. This corresponds to the update edge from Sect. 3.1.

To perform the provenance maintenance described above, we leverage the
distributed querying processing capability of the declarative networking engine.
Given any NDlog program, additional NDlog provenance maintenance rules are
automatically generated. The detailed description with a pseudocode of the auto-
mated rewrite can be found in Ref. [89].

3.3 Proactive and Reactive Maintenance

To answer provenance queries about past tuples or updates, the STAP model
contains a temporal dimension. Note that keeping full copies of the provenance is
unnecessary because STAP provenance is monotonic: the provenance of historic
updates and tuples (which eventually make up a major portion of a provenance
graph) is immutable. STAP therefore maintains provenance incrementally, i.e.,
it considers only the “deltas” between adjacent versions, which are sufficient to
reconstruct the full provenance graph. STAP stores these deltas in the following two
different ways:

• Explicit deltas (proactive). In this approach, all of the +prov, -prov,
+ruleExec and -ruleExec entries are stored explicitly in a temporally ordered
log that is indexed by time. Compared to keeping each version of the provenance,
the storage cost is considerably lower; however, the full provenance information
must be reconstructed from the deltas before a query can be answered.

The idea of keeping deltas between adjacent versions and reconstructing a
specific version by merging deltas is known as a classic approach to perform effi-
cient versioning. It has been extensively studied and adopted in many application
domains, include transaction logs in database systems [24, 58], revision control
systems [35,80], and log-structure file systems [71,73]. Several variants, such as
forward deltas and reverse deltas [80], have been proposed to tailor the system
performance for different system settings or requirements. We expect that similar
treatment is applicable to the proactive provenance maintenance as well.

282 W. Zhou

• Per-node input logs (reactive). In this approach, STAP maintains only the
non-deterministic inputs (recv entries for incoming messages, as well as tuple
insertions and deletions) at each node. If the underlying application is deter-
ministic, STAP can replay these inputs at query time to reproduce the original
execution of that node, and reconstruct the provenance on the fly. As an
optimization, each derived tuple sent across nodes needs only to include the
sender’s timestamp.

provenance
extractor

prov(@N, VID, Time, RID, RTime, RLoc)

ruleExec(@RLoc, RID, Rule, RTime,
CList, Trigger)

provQuery(@N, VID, Time)

execQuery(@RLoc, RID, Time)

prov.VID = provQuery.VID

execQuery.RID = ruleExec.RID

project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

project (execQuery.RLoc,
ruleExec.Trigger / ruleExec.CList[i],

execQuery.Time)
as provQuery(@N, VID, Time)

log

Fig. 4 Logical query plan for recursive provenance queries. Underlined attributes are primary
keys

3.4 Provenance Querying

To query the provenance of an update, STAP executes a distributed recursive query
that reconstructs the relevant subtree of the provenance graph from the four tables
we have described in Sect. 3.1. Figure 4 shows the logical query plan for evaluating
this distributed recursive query; the query starts at the root of the subtree and
iteratively adds vertices and edges until a fixpoint is reached (at the base tuples).
The results are then returned in the form of tuples from the prov, ruleExec, send,
and recv tables that encode the relevant subtree.

In Fig. 4, the initial provenance query is represented as an input tuple
provQuery(@N,VID,Time) to the logical plan. Based on this tuple, STAP carries
out the following steps:

• Step 1: Retrieve rule execution instances. Since the VID uniquely identifies
�τ , STAP uses it as a lookup into the prov table (via a database join) and
then retrieves the corresponding RID used to derive the tuple, as well as the
location RLoc at which the rule was fired. This corresponds to the generation

Towards a Data-Centric Approach to Attribution in the Cloud 283

of the DERIVE or UNDERIVE vertex. If RLoc is different from Loc (i.e., the tuple
was derived from a remote rule execution), additional RECV and SEND vertices are
generated by joining the VIDs of derived tuples with the recv and send tables1;
for readability, these extra operations have been omitted from Fig. 4. Next, STAP
generates execQuery tuples to trigger queries on the ruleExec table.

• Step 2: Expand dependent derivations. STAP ships the resulting
execQuery(@RLoc,RID,Time) tuple to RLoc and there joins it with the local
ruleExec table to recursively expand the child derivations that have resulted
in �τ . Here, multiple additional provQuery tuples are generated: one for the
trigger event for the delta rule RID, and another for each condition predicate
value that occurred during the execution of RID. Each expansion generates an
INSERT or DELETE vertex, depending on whether the trigger event was an insertion
or a deletion, and each expanded condition generates an EXIST vertex, which
includes additional INSERT and DELETE vertices to explain why the condition held
at the relevant Time.

• Repeat until fixpoint. Steps 1 and 2 are performed recursively until all child
nodes are expanded. As the query progresses, the provQuery events are recur-
sively propagated from the root of the provenance tree (where the queried update
resides) towards the child nodes in order to construct the entire subtree. Each
level of the tree can be expanded in parallel at different nodes. Upon reaching the
leaf nodes (which correspond to base tuples), the query results are returned back
to the root along the reverse path. At each level, the parent node returns only its
portion of the query result (subtree) after all the child nodes have completed their
respective subqueries.

4 Secure Provenance

In the previous sections, we have assumed a trusted environment, in which nodes are
cooperative and correctly follow the provenance maintenance and querying proto-
cols. However, distributed systems may be deployed across multiple administrative
domains, where nodes may refuse to cooperate or even intentionally misbehave for
various reasons, such as tensions between competing parties or malicious attacks.

In this section, we consider attribution in an adversarial setting, that is, we
assume that a faulty node does not necessarily crash but can also change its
behavior and continue operating. Getting correct answers to attribution queries in
an adversarial setting is difficult because the misbehaving nodes can lie to the
querier. For example, the adversary can attempt to conceal his actions by causing
his nodes to fabricate plausible (but incorrect) responses to attribution queries, or

1After retrieving the recv entry based on VID and RTime, we use the STime (sender’s
timestamp) attribute in recv to fetch the appropriate send entry on the sender’s side. This avoids
explicit time synchronization.

284 W. Zhou

he can attempt to frame correct nodes by returning responses that blame his own
misbehavior on them. Thus, the adversary can gain valuable time by misdirecting
the operators and/or causing them to suspect a problem with the attribution system
itself.

Existing solutions for attribution in an adversarial environment usually requires
some trusted components, e.g., a trusted virtual-machine monitor [5, 42], a trusted
host-level monitor [57], a trusted OS [60], or trusted hardware [10]. However, most
components that are available today are not fully trustworthy; OSes and virtual
machine monitors have bugs, which a powerful adversary could exploit, and even
trusted hardware is sometimes compromised [40]. We argue that it is useful to have
alternative techniques available that do not require this type of trust.

Towards this challenge, we introduce Secure Time-aware Provenance (STAP),
a provenance system that can operate in a completely untrusted environment. We
assume that the adversary may have compromised an arbitrary subset of the nodes,
and that he may have complete control over these nodes. Despite the conservative
threat model, a STAP system provides strong, provable guarantees: it ensures that
an observable symptom of a fault or an attack can always be traced to a specific
event—passive evasion or active misbehavior—on at least one faulty node, even
when an adversary attempts to prevent this.

4.1 Threat Model and Assumptions

Since we would like to enable system administrators to investigate a wide range
of problems, ranging from simple misconfigurations to hardware faults and even
clandestine attacks, we conservatively assume Byzantine faults [46], i.e., that an
adversary may have compromised an unknown subset of the nodes, and that he
has complete control over them. Thus, the non-malicious problems are covered as
a special case. We assume that the adversary can change both the primary system
and the provenance system on these nodes, and he can read, forge, tamper with,
or destroy any information they are holding. We also assume that no nodes or
components of the system are inherently safe, i.e., system administrators do not
a priori trust any node other than their own local machines. Reference [85] presents
the detailed assumptions considered in STAP.

Compromises

Ideally, we would like to correctly answer provenance queries even when the system
is under attack. However, given our conservative threat model, this is not always
possible. Hence, we make the following two compromises: first, we only demand
that the system answer provenance queries about behavior that is observable by
at least one correct node [32]; in other words, if some of the adversary’s actions
never affect the state of any correct node, the system is allowed to omit them.

Towards a Data-Centric Approach to Attribution in the Cloud 285

Second, we accept that the system may sometimes return an answer that is incorrect
or incomplete, as long as the system administrator can (a) tell which parts of the
answer are affected, and she can (b) learn the identity of at least one faulty node. In
an attribution setting, this seems like a useful compromise: any unexpected behavior
that can be noticed is observable by definition, and even a partial answer can help
the system administrator determine whether a fault or misbehavior has occurred and
which parts of the system have been affected.

4.2 Approach Overview

The provenance definition in previous sections assumes that, at least conceptually,
the entire system execution E is known. However, in a distributed system without
trusted components, no single node can have this information, especially when
nodes are faulty and can tell lies. In this section, we present STAP, which constructs
an approximation Gν of the “true” provenance graph G that is based on information
available to correct nodes.

Approximate Provenance Using Evidence

Although each node can observe only its own local events, nodes can use messages
from other nodes as evidence to reason about events on these nodes. We can require
that messages be authenticated and acknowledged, such that each received message
m is evidence of its own transmission. Once we discover inconsistencies from the
input/output messages, the evidences can be used to tie faults to a particular node
who is responsible for the inconsistency.

In addition, we can demand that nodes attach some additional information ϕ(m),
such as an explanation for the transmission of m. The validity of ϕ(m) is checked
against the expected execution logic and the evidence. For the purposes of this
section, we will assume that ϕ(m) describes the sender’s entire execution prefix,
i.e., all of its local events up to and including the transmission of m. Of course, this
would be completely impractical; our implementation in sections “Secure Logging
for Provenance Maintenance” and “Secure Provenance Querying” achieves a similar
effect in a more efficient way.

When a provenance query is issued on a correct node, that node can collect some
evidence Ē , such as messages it has locally received, and/or messages collected
from other nodes. It can then use this evidence to construct an approximation Gν(Ē)
of G(E), from which the query can be answered.

We use the similar mechanisms presented in Sect. 3 to construct provenance from
the evidence. In the construction of Gν(Ē), the legitimacy of the vertices depends
on the evidence collected from the other nodes. We introduce a color for each vertex
v in Gν(Ē), which is used to indicate whether v is legitimate: correct vertices are
black, and faulty vertices are red. For example, if a faulty node Ni has no tuple τ

286 W. Zhou

derived during the execution, but nevertheless sends a message +τ to another node.
+τ has no legitimate provenance, so we use the red color to represent transmission
of +τ . Finally, we introduce a third color, yellow, for vertices whose true color is
not yet known.

Definition: STAP

Based on the intuition presented in section “Approximate Provenance Using Evi-
dence”, we give the definition of STAP, which is formulated based on the following
properties.

Definition 1 (Monotonicity). An approximation Gν(Ē) of G(E) is monotonic if
Gν(Ē) is a subgraph of Gν(Ē + Ē ′) for additional evidence Ē ′.

Definition 2 (Accuracy). Gν(Ē) is accurate if it faithfully reproduces all the
vertices on correct nodes; in other words, if a vertex v on a correct node appears
in Gν (Ē) then v must also exist in G(E), be colored black, and have the same
predecessors and successors.

Definition 3 (Completeness). Gν (Ē) is complete if, given sufficient evidence Ē
from the correct nodes, (a) each vertex in G(E) on a correct node also appears in
Gν(Ē), and (b) for each detectably faulty node, Gν(Ē) contains at least one red or
yellow vertex.

Monotonicity is an important property because it prevents Gν from changing
fundamentally once additional evidence becomes available, which could invalidate
responses to earlier queries. Accuracy and completeness properties give guarantees
that a correct node will never be falsely accused and that a detectably faulty node
will be eventually detected. Based on these properties, we define STAP as follows:

Definition 4. Given an execution trace E , we define STAP to be a monotonic
approximation Gν(Ē) of the provenance graph G(E) that is both complete and
accurate in an untrusted setting.

4.3 Secure Maintenance and Querying

We next present the security enhancement to the provenance maintenance and
querying for implementation a STAP system.

Secure Logging for Provenance Maintenance

Recall from Sect. 2.3 that provenance graph G = (V,E) is designed so that each
vertex v ∈ V can be attributed to a specific node HOST(v). Thus, we can partition

Towards a Data-Centric Approach to Attribution in the Cloud 287

the graph so that each v ∈ V is stored on HOST(v). To ensure accuracy, we
must additionally keep evidence for each cross-node edge, i.e., (v1,v2) ∈ E with
HOST(v1) �= HOST(v2). Specifically, HOST(v1) must be able to prove that HOST(v2) has
committed to v2, and vice versa, so that each node can prove that its own vertex is
legitimate, even if the other node is compromised. Finally, each node’s subgraph of
G is completely determined by its inputs and outputs; hence, it is sufficient to store
messages and changes to base tuples. When necessary, the microquery module can
reconstruct G from this information.

Logs and Authenticator Sets

STAP’s log is a simplified version of the log from PeerReview [33]. The log λi of a
node i consists of entries of the form ek := (tk,yk,ck), where tk is a timestamp, yk is
an entry type, and ck is some type-specific content. There are five types of entries:
SND and RCV record messages, ACK records acknowledgments, and INS and DEL

record base tuple insertions and deletions. Note that log entries are different from
vertex types. Each entry is associated with a hash value hk = H(hk−1 || tk ||yk ||ck)
with h0 := 0, where H(·) is a cryptographic hash function. Together, the hk form
a hash chain. A node i can issue an authenticator ak := (tk,hk,σi(tk ||hk)); σi(·)
denotes a signature with i’s key. An authenticator is a signed commitment that ek

(and, through the hash chain, e1, . . . ,ek−1) must exist in i’s log. Each node i stores
the authenticators it receives from other nodes in its authenticator set Ai.

Commitment

When a node i needs to send a message ±τ to another node j, it first
appends a new entry ex := (tx, SND,(±τ, j)) to its local log. Then it sends
(±τ,hx−1, tx,σi(tx ||hx)) to j. When a node j receives a message (±τ,a,b,c), j
calculates h′x := H(a ||b || SND ||(±τ, j)) and then checks whether the authenticator
is properly signed, i.e., πi(c) = (b ||h′x), and whether tx is within Δclock +Tprop of
its local time. If not, j discards the message. Otherwise, j adds (tx,h′x,c) to its
authenticator set A j,i, appends an entry ey := (k,RCV,(±τ, i,a,b,c)) to its own log,
and sends (ACK, tx,hy−1, ty,σ j(ty ||hy)) back to i.

Once i receives (ACK,a,b,c,d) from j, it first checks its log to see whether there
is an entry ex = (a, SND,(±τ, j)) in its log that has not been acknowledged yet. If
not, it discards the message. i then calculates h′y := H(b ||c ||RCV ||(±τ, i,hx−1, tx,
σi(tx ||hx))), and checks whether π j(d) = (c ||h′y) and ty is within Δclock + Tprop

of its local time. If not, i discards the message. Otherwise, i adds (c,h′y,d) to its
authenticator set Ai, j and appends an entry ez := (t,ACK,a,b,c,d) to its log. If i
does not receive a valid acknowledgment within 2 ·Tprop, it immediately notifies the
administrator of this.

288 W. Zhou

Retrieval

The provenance maintenance module implements a primitive RETRIEVE(v,ai
k) which,

when invoked on i := HOST(v) with a vertex v and an authenticator ai
k of i, returns the

prefix of the log in which v was generated. Typically, this is the prefix authenticated
by ai

k, but if v is an EXIST vertex that exists at ek, the prefix is extended to either
(a) the point where v ceases to exist, or (b) the current time. If the prefix extends
beyond ek, i must also return a new authenticator that covers the entire prefix. A
correct node can always comply with such a request.

Secure Provenance Querying

STAP adopts a similar distributed recursive querying framework as STAP. To con-
struct provenance in a secure manner, it uses a special primitive called MICROQUERY

to navigate a STAP graph.2 MICROQUERY has two arguments: a vertex v, and evidence
Ē such that v ∈ Gν(Ē). MICROQUERY returns one or two color notifications of the
form BLACK(v), YELLOW(v), or RED(v). If two notifications are returned, the first one
must be YELLOW(v). MICROQUERY can also return two sets Pv and Sv that contain
the predecessors and successors of v in Gν(Ē), respectively. Each set consists of
elements (vi,ei), where Ēi is additional evidence such that vi and the edge between
vi and v appear in Gν(Ē +ei); this makes it possible to explore all of Gν by invoking
MICROQUERY recursively.

The microquery module implements MICROQUERY(v,e), and uses the information
in this log to implement MICROQUERY; it uses authenticators as a specific form of
evidence. At a high level, this works by (1) using e to retrieve a log prefix from
HOST(v), (2) replaying the log to regenerate HOST(v)’s partition of the provenance
graph G, and (3) checking whether v exists in it. If v exists and was derived correctly,
its predecessors and successors are returned, and v is colored black; otherwise v is
colored red. A formal description of the querying process is presented in Ref. [85].

4.4 Evaluation

We evaluate STAP using three applications, including Quagga [66] routing deploy-
ment, Chord [77] distributed hash table, and Hadoop [30] MapReduce. Since we
have already proven the correctness of the STAP algorithm in [86], we focus mostly
on usability and performance. Specifically, our goal is to answer the following high-
level questions: (i) can STAP answer useful attribution queries? (ii) how much
overhead does STAP incur at runtime? and (iii) how expensive is it to ask a query?

2MICROQUERY returns a single vertex; provenance queries must invoke it repeatedly to explore
Gν . Hence the name.

Towards a Data-Centric Approach to Attribution in the Cloud 289

Due to space constraints, we present only the usability result (for the Hadoop
experiment) here. The complete results are presented in Ref. [85].

Usability

In the Hadoop experiment, we ran the experiments on 20 c1.Medium instances on
Amazon EC2 (in the us-east-1c region). The program we used (WordCount)
counts the number of occurrences of each word in a 10.3 GB dataset consisting of
the Wikipedia and 12/2010 Newspapers crawl from WebBase [81]. The provenance
query Hadoop-Squirrel asks for the provenance of a given key-value pair in the
output; for example, if the WordCount application produces the (unlikely) output
(squirrel,10000) to indicate that the word “squirrel” appeared 10,000 times
in the input, this could be due to a faulty or compromised mapper. Such queries are
useful to investigate computation results on outsourced Cloud databases [65].

Figure 5 shows the output of the Hadoop-Squirrel query, where one of the
Mappers (i.e. Map-3) is configured to misbehave—in addition to emitting a (word,
offset) tuple for each word in the text, it injects 9,991 additional (squirrel,
offset) tuples. An analyst who is suspicious about the enormous prevalence of
squirrels in this dataset can use STAP to query the provenance of the (squirrel,

10,000) output tuple. STAP responds by selectively reconstructing the provenance
subgraph of the corresponding reduce task. Seeing that one mapper output 9,993

(squirrel, 10,000)
[Out@Red-3]

(squirrel, 4)
[In@Red-3]

(squirrel, 3)
[Shuffled from Map-7]

(squirrel, 9,993)
[In@Red-3]

(squirrel, 3)
[In@Red-3]

(squirrel, 4)
[Shuffled from Map-1]

(squirrel, 9,993)
[CombineOut@Map-3]

(squirrel, offset1)
[MapOut@Map-3]

(squirrel, offset2)
[MapOut@Map-3]

(squirrel, offset9,993)
[MapOut@Map-3]

(squirrel, offset3)
[MapOut@Map-3]

(squirrel, offset4)
[MapOut@Map-3]

(fileSplit1, offsetA)
[MapIn@Map-3]

(fileSplit1, offsetB)
[MapIn@Map-3]

(fileSplit1, offsetC)
[MapIn@Map-3]

……

(squirrel, 9,993)
[Shuffled from Map-3]

Intermediate MapOut

Reduce Side

Map Side

Fig. 5 Example result (with simplified notations) of the Hadoop-Squirrel query

squirrels while the others only reported 3 or 4, she can “zoom in” further by
requesting the provenance of the (squirrel, 9,993) tuple, at which point STAP

290 W. Zhou

reconstructs the provenance subgraph of the corresponding map task. This reveals
two legitimate occurrences and lots of additional bogus tuples, which are colored
red.

5 Related Literature

The STAP system presented in this chapter expands upon previous results in the
databases, networking and systems communities. In this section, we describe the
related research in these areas.

5.1 Attribution in Distributed Systems

Attribution in distributed systems has received a lot of traction in the system research
community. There has been a substantial amount of work in this area. We summarize
the work in the related topics.

Replay-Based Debugging

Replay-based debugging is enabled by recording all the non-deterministic events
(such as network communications and interrupts from the operating systems) at
runtime. Once a system fault is detected, users can then perform deterministic replay
to reproduce the fault. Diagnosis is performed by inspecting how system states
progress towards the fault, facilitated by watchpoints and breakpoints.

These systems, such as P2 debugger [76], liblog [22], Friday [21], WiDS [51],
MaceMC [41], and QI [64] are designed to diagnose non-malicious faults, such as
bugs or race conditions. When nodes have been compromised by an adversary, these
systems can return incorrect results.

Log-Based Forensics

Log-based forensics systems capture execution logs at runtime by inserting addi-
tional statements in the source code, or by observing the inputs, outputs and system
calls of each system component. For instance, Pip [70] logs path instances started
from outside inputs; Backtracker [42, 43] records the objects and their causalities;
logs of Magpie [4] are in the form of path instances consisting of the used system
components; and D3S [50] modifies the underlying operating systems to allow
automatic injection of state exposers and predicate checkers. Based on the logs and
snapshots taken at runtime, users are enabled to reason about the causalities between
system states, with the support from visualization tools and query engines.

Towards a Data-Centric Approach to Attribution in the Cloud 291

The STAP system presented in this chapter provides a general-purpose abstrac-
tion of dependencies, and enables richer functionalities. Among others, the main
difference between STAP and these existing forensic systems is that STAP does
not require trust in any components on the compromised nodes. For example,
Backtracker [42, 43] and PASS [60] require a trusted kernel, cooperative ReVirt [5]
a trusted VMM, and A2M [10] trusted hardware. ForNet [74] and NFA [83] assume
a trusted infrastructure and collaboration across domains.

Accountability

Systems such as PeerReview [33] and NetReview [31] can automatically detect
when a node deviates from the algorithm it is expected to run. Tamper-evident
logs are introduced to prevent modifications on history from unauthorized peers.
In addition, equivocation, i.e. making conflicting statements to different nodes, are
prevented by allowing peers to exchange logs to examine consistency. Attestation-
based trusted hardware, such as A2M [10] and TrInc [47], can be used to further
reduce the auditing overhead.

These systems cannot detect problems that arise from interactions between
multiple nodes, such as BadGadget [28] in interdomain routing, or problems that
are related to inputs or unspecified aspects of the algorithm. Also, accountability
systems merely report that a node is faulty, whereas provenance systems also offer
support for diagnosing faults and for assessing their effects on other nodes.

Proofs of Misbehavior

Many systems that are designed to handle non-crash faults internally use proofs
of misbehavior, such as the signed confessions in Ngan et al. [62], a set of
conflicting tickets in SHARP [20], or the POM message in Zyzzyva [44]. In STAP,
any evidence that creates a red vertex in Gν essentially constitutes a proof of
misbehavior, but STAP’s evidence is more general because it proves misbehavior
with respect to the (arbitrary) primary system, rather than with respect to STAP
itself. Systems such as PeerReview [33] can generate protocol-independent evidence
as well, but, unlike STAP’s evidence, PeerReview’s evidence is not diagnostic: it
only shows that a node is faulty, but not what went wrong.

5.2 Provenance

Since its importance was realized by the research community, provenance has
been extensively studied, and successfully applied to a large range of application
areas. Various provenance models have been proposed, and implemented in their
corresponding systems. Our work presented in this chapter was inspired by the rich
previous work in this domain.

292 W. Zhou

Provenance Model

A classic approach to model provenance is to capture provenance as graphs.
Provenance graphs reflect the relations between derived tuples and the base tuples
that contribute to them. Each vertex represents a data object or an operation that
transforms data objects (for instance, a database relational operator such as union,
join, selection and projection), and each edge denotes a data flow among the
vertices. This approach is also adopted by many of the scientific computation
systems [8,11,63,78] and file systems [60], in which a directed-acyclic-graph (DAG)
representation is used to describe dependencies.

Alternatively, data provenance may be more compactly represented using alge-
braic representation [7,26]. Algebraic representations encode provenance using the
binary operations + and ∗ (representing, for example, union and join). For instance,
let α , β , and γ represent base tuples, a tuple τ with provenance of α +β ∗ γ means
that τ is derivable if α exists or both β and γ are existent.

There have been several efforts to generalize provenance models and allow
provenance interoperability. Green et al. [26] proposed provenance semiring, a
provenance model that is useful for a variety of applications and generalizes
previous models of provenance (such as lineage [12], why-provenance [7]) and
query answering on annotated relations. The Open Provenance Model (OPM) [59]
is a standardization effort that proposes an amalgamation of concepts from existing
provenance systems, and aims to improve the provenance interoperability.

Maintenance and Querying

Provenance data are usually stored as additional tuple fields or separate tables in
relational databases (such as Orchestra [27] and PermDB [23]), XML files (such
as Kepler [78], ES3 [19]) and RDF files (such as Taverna [63]). In our STAP
system, provenance information is maintained in an internal distributed relational
database. While potential inconsistencies due to transient state could be resolved by
maintaining provenance in bi-temporal databases [38,45], STAP inherently captures
and maintains temporal information along with the provenance data.

To facilitate access to the provenance data, provenance systems allow users to
specify queries written in SQL [63, 78], XQuery [17], or query languages specifi-
cally designed for provenance (such as ProQL [39]). ProQL supports a wide variety
of applications with derived data, and can be used to assess trust and derivability,
detect side effects, as well as compute data annotations in particular provenance
semirings. To improve query performance, recent work [2, 3] studies provenance
labeling for efficiently evaluating reachability queries over large provenance graphs
in a variety of workflow settings.

Visualization, an alternative approach to retrieve information from provenance,
has been previously studied in VisTrails [8], in which workflow specifications can
be compared side by side, and workflow specifications can be adjusted by example-
based refinement [72].

Towards a Data-Centric Approach to Attribution in the Cloud 293

Applications

Provenance has been implemented and integrated in many practical systems.
Probabilistic databases, such as Trio [82], Mystiq [68, 69], and Panda [37], have
applied provenance for efficient management of temporal and/or uncertainties.
Trio, in particular, supports an uncertainty data model by associating each tuple
with a confidential level, and updating the confidential levels of derived tuples
based on their provenance. Collaborative data sharing systems (CDSS), such as
Orchestra [27], uses provenance for trust management and reconciling conflicts
among data from multiple sources. PASS [60] and Sprov [34] track file modification
histories and causalities in file systems. PA-S3fs [61] and RAMP [36] focus on
file systems and MapReduce workloads on the emerging cloud platform. Workflow
systems, such as VisTrails [8], myGrid/Taverna [63], Kepler [78], Chimera [17],
and ZOOM [11], use provenance support in scientific computations, to facilitate
verification, reproducibility, and collaboration. VisTrails, for instance, captures
the evolution of workflow specifications—the history of refining a workflow
specification (e.g., the addition or deletion of a module, and the modification of
a parameter). Several surveys [6, 13, 18] provides further details about workflow
provenance systems.

Provenance Security

McDaniel et al. [57] outlines requirements for secure network provenance, empha-
sizing the need for provenance to be tamper-proof and non-repudiable. Hasan
et al. proposes Sprov [34] that implements secure chain-structured provenance for
individual documents; however, it lacks important features that are required in a
distributed system, e.g., a consistency check to ensure that nodes are processing
messages in a way that is consistent with their current state. Pedigree [67] captures
provenance at the network layer in the form of per-packet tags that store a history
of all nodes and processes that manipulated the packet. It assumes a trusted
environment, and its set-based provenance is less expressive compared to STAP’s
graph-based dependency structure.

Provenance Privacy

More recently, researchers have studies, more specifically, the tradeoffs between
privacy and utility for workflow provenance. For example, [14, 15] proposed the
module privacy that ensures that the probability of guessing the correct outputs of
a module, given the revealed inputs in the provenance, is below a given threshold.
This is achieved by hiding a subset of the inputs (or outputs) of the modules in the
provenance graph exposed to the users.

294 W. Zhou

6 Conclusion

This chapter describes a data-centric approach to attribution in the cloud. We
present Secure Time-Aware Provenance (STAP), an approach that provides the fun-
damental functionality required for performing attribution queries—the capability
to “explain” the existence (or change) of system state in a potentially adversarial
environment. STAP reveals the dependencies between system states, and permits
system operators to transitively tie observed faults to their potential causes, and to
assess the damage that these faults may have caused to the rest of the system. We
have identified several practical challenges in deploying STAP, and have presented
the solutions that addressed each of the following main challenges:

• Distribution. A key challenge of supporting provenance in distributed system is
to develop an abstract system model in which provenance data can be maintained
efficiently. We demonstrated that it is achievable by modeling the system state
as a set of distributed databases, and by extracting logical dependencies from
system specifications and runtime. Enabled by the distributed query processing
capabilities, provenance information is then incrementally maintained as views
of system state during the execution. We analytically and empirically showed that
the overhead incurred by provenance maintenance is linear in the cost of the base
system, and, therefore, does not affect its scalability.

• Time-awareness. Another challenge is to track state changes over time in a
relaxed system model, in which clocks are not synchronized and messages
can be delayed, reordered or lost. To address this challenge, we examined the
fundamental correlation between provenance and (observable) event ordering
in distributed systems. We then presented an enhanced provenance model that
provides a sound and complete representation that correctly captures the system
dependencies.

• Security. A final challenge is to provide security guarantees in completely
untrusted environments, in which the adversary may have compromised an
arbitrary subset of the nodes, and that he may have complete control over
these nodes. We showed that, despite the conservative threat model, our security
enhancement in STAP still provides strong, provable guarantees: it ensures that
an observable symptom of a fault or an attack can always be traced to a specific
event|passive evasion or active misbehavior|on at least one faulty node, even
when the adversary attempts to prevent this.

To demonstrate STAP’s practicality and generality, we have applied it to a
variety of different systems, including the Internet’s interdomain routing system,
the Chord distributed hash table, and the Hadoop MapReduce system. The
evaluation has demonstrated that STAP is able to detect a number of different
problems that had been previously described in the literature, and that STAP is
practical, both in terms of its run-time overhead and in terms of the effort required
to deploy it.

Towards a Data-Centric Approach to Attribution in the Cloud 295

6.1 Future Research Directions

We conclude the chapter with a list of several promising research directions
suggested by the presented research work.

Usability and Adoption

STAP automates fault diagnosis and debugging by systematically maintaining
and querying state dependencies as the system execution progresses. Its usability,
however, can be further improved to encourage its adoption in academia and
industrial development settings.

One important aspect for future research is to enhance the “readability” of
the returned provenance results. Provenance information could be overwhelmingly
large in systems with complex dependency logic. To address this challenge, we
intend to explore the following two complementary approaches: the first approach
focuses on developing an expressive yet easy-to-use interface (e.g., a SQL-like
declarative query language tailored for the STAP model), for users to annotate and
prune provenance data based on a customizable pattern; alternatively, the size and
complexity of provenance information can be controlled by introducing layering
into the provenance system, in which case provenance data can be captured at a
variety of granularities, and be interactively expanded.

Privacy and Confidentiality

STAP mainly explores the authenticity and integrity aspects of security in prove-
nance systems. We plan to extend the exploration to their counterparts, privacy and
confidentiality. It is intriguing to study the tension between privacy and verifiability,
two seemingly contradictory properties. As a first step, the private and verifiable
routing (PVR) [29, 84] provides initial evidence that strong privacy guarantees
can be achieved in interdomain routing, where the functionality of each node is
well-restricted to route selection and advertisement based on a customized ranking
function. We intend to further understand the performance implications or limits
when extending the guarantees to more general systems.

Fault Diagnosis and Recovery

STAP can be used to systematically diagnose faults, where “explanations” of a
suspicious symptom are compiled as a set of state dependencies that recursively
trace back to the root causes. As the basis for inferring state dependencies, the
high-level dependency logic (captured as derivation rules in STAP) is of critical
importance. To generalize and further automate the extraction of such dependency

296 W. Zhou

logic from a target application, one potential avenue that we intend to explore is to
employ programming language techniques that perform static (or dynamic) analysis
on the information flow of target systems.

In addition to debugging, one intriguing direction is the use of STAP for
provenance-based recovery. STAP maintains sufficient information to reproduce
the system execution trace individually for each node. This brings opportunities
to undo the damages caused by an exposed system fault, by applying the inverse
operations in the reverse order. For example, a mistakenly deleted system state
can be restored by the corresponding insertion. In addition, provenance keeps the
dependency information and thus allows minimal recovery, i.e., the recovery only
impacts the nodes that are actually affected by the fault.

Provenance-Driven Invariant Generation

Formal verification is an alternative approach to enforce the safety and security of
cloud applications. One important challenge in formal verification is for system
designers to discover the safety properties (or invariants). The quality of these safety
properties directly affects the quality of the verification results, however, there lacks
a systematic approach to extract the safety properties, and the process largely relies
on manual efforts today. To address this problem, we are interested in feeding the
design bugs or security vulnerabilities exposed in fault diagnosis (as hints for the
safety properties) to refine the invariants in the design and development phase.

Acknowledgements The research work presented in this chapter are performed in collaboration
with Boon Thau Loo, Andreas Haeberlan and Zachary Ives from University of Pennsylvania, and
Micah Sherr from Georgetown University.

References

1. Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and
Russell Sears. Boom Analytics: Exploring Data-Centric, Declarative Programming for the
Cloud. In Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys), 2010.

2. Zhuowei Bao, Susan B. Davidson, Sanjeev Khanna, and Sudeepa Roy. An optimal labeling
scheme for workflow provenance using skeleton labels. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2010.

3. Zhuowei Bao, Susan B. Davidson, and Tova Milo. Labeling recursive workflow executions on-
the-fly. In Proceedings of ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2011.

4. Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for request
extraction and workload modelling. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

5. Murtaza Basrai and Peter M. Chen. Cooperative ReVirt: adapting message logging for intrusion
analysis. Technical Report University of Michigan CSE-TR-504-04, 2004.

Towards a Data-Centric Approach to Attribution in the Cloud 297

6. Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey. ACM
Computing Survey, 37(1):1–28, 2005.

7. Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization of
data provenance. In Proceedings of the International Conference on Database Theory (ICDT),
2001.

8. Steven Callahan, Juliana Freire, Emanuele Santos, Carlos Scheidegger, Claudio Silva, and
Huy Vo. VisTrails: Visualization meets data management. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2006.

9. David Chiyuan Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip Levis, Scott
Shenker, and Ion Stoica. The Design and Implementation of a Declarative Sensor Network
System. In Proceedings of ACM Conference on Embedded networked Sensor Systems (SenSys),
2007.

10. Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2007.

11. Sarah Cohen-Boulakia, Olivier Biton, Shirley Cohen, and Susan Davidson. Addressing the
provenance challenge using zoom. Concurrency and Computation: Practice and Experience,
20:497–506, 2008.

12. Yingwei Cui, Jennifer Widom, and Janet L.Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Transaction on Database Systems (TODS), 25, 2000.

13. Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludäscher, Timothy M.
McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire. Provenance in scientific
workflow systems. IEEE Data Engineering Bulletin, 30(4):44–50, 2007.

14. Susan B. Davidson, Sanjeev Khanna, Tova Milo, Debmalya Panigrahi, and Sudeepa Roy.
Provenance views for module privacy. In Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), 2011.

15. Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, Julia Stoyanovich, Val Tannen, Yi Chen,
and Tova Milo. Enabling privacy in provenance-aware workflow systems. In Proceedings of
Biennial Conference on Innovative Data System Research (CIDR), 2011.

16. Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and Bruce Maggs. Locating
internet routing instabilities. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMMM), 2004.

17. Ian T. Foster, Jens-S. Vöckler, Michael Wilde, and Yong Zhao. Chimera: A virtual data system
for representing, querying, and automating data derivation. In Proceedings of Scientific and
Statistical Database Management Conference (SSDBM), 2002.

18. Juliana Freire, David Koop, Emanuele Santos, and Claudio T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science and Engineering, 10, 2008.

19. James Frew and Peter Slaughter. Provenance and annotation of data and processes. Chapter
ES3: A Demonstration of Transparent Provenance for Scientific Computation, pages 200–207.
Springer-Verlag, Berlin, Heidelberg, 2008.

20. Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. SHARP: An
architecture for secure resource peering. In Proceedings of ACM Symposium on Operating
Systems Principles (SOSP), 2003.

21. Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Friday:
Global Comprehension for Distributed Replay. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2007.

22. Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay Debugging for Dis-
tributed Applications. In Proceedings of the USENIX Annual Technical Conference (USENIX
ATC), 2006.

23. Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on the same data
model through query rewriting. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2009.

298 W. Zhou

24. Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom Price, Franco
Putzolu, and Irving Traiger. The recovery manager of the system r database manager. ACM
Computing Survey, 13(2):223–242, 1981.

25. Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange
with mappings and provenance. In Proceedings of the International Conference on Very Large
Databases (VLDB), 2007.

26. Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Proceedings
of the ACM Symposium on Principles of Database Systems (PODS), 2007.

27. Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Olivier Biton, Zachary G. Ives, and
Val Tannen. ORCHESTRA: Facilitating collaborative data sharing. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2007.

28. Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Transactions on Networking, 10(2):232–243, April 2002.

29. Alexander J. T. Gurney, Andreas Haeberlen, Wenchao Zhou, Micah Sherr, and Boon Thau Loo.
Having your cake and eating it too: Routing security with privacy protections. In Proceedings
of the ACM Workshop on Hot Topics in Networks (HotNets-X), 2011.

30. Hadoop. http://hadoop.apache.org/.
31. Andreas Haeberlen, Ioannis Avramopoulos, Jennifer Rexford, and Peter Druschel. NetReview:

Detecting when interdomain routing goes wrong. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2009.

32. Andreas Haeberlen and Petr Kuznetsov. The Fault Detection Problem. In Proceedings of the
International Conference on Principles of Distributed Systems (OPODIS), 2009.

33. Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical accountability
for distributed systems. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2007.

34. Ragib Hasan, Radu Sion, and Marianne Winslett. Preventing history forgery with secure
provenance. ACM Transactions on Storage (TOS), 5(4):1–43, 2009.

35. James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta algorithms: an empirical analysis.
ACM Transactions on Software Engineering and Methodology (TOSEM), 7(2):192–214, 1998.

36. Robert Ikeda, Hyunjung Park, and Jennifer Widom. Provenance for generalized map and
reduce workflows. In Proceedings of Biennial Conference on Innovative Data System Research
(CIDR), 2011.

37. Robert Ikeda and Jennifer Widom. Panda: A system for provenance and data. IEEE Data
Engineering Bulletin, Special Issue on Data Provenance, 33:42–49, 2010.

38. C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and Richard Thomas Snodgrass. A glossary of
temporal database concepts. SIGMOD Record, 21:35–43, 1992.

39. Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data provenance. In
Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD),
2010.

40. Bernhard Kauer. OSLO: Improving the security of Trusted Computing. In Proceedings of the
USENIX Security Symposium (USENIX Security), 2007.

41. Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death, and the
Critical Transition: Finding Liveness Bugs in Systems Code. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2007.

42. Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Transactions on Computer
Systems, 23(1):51–76, 2005.

43. Samuel T. King, Z. Morley Mao, Dominic Lucchetti, and Peter Chen. Enriching intrusion
alerts through multi-host causality. In Proceedings of Network and Distributed System Security
Symposium (NDSS), 2005.

44. Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2007.

http://hadoop.apache.org/

Towards a Data-Centric Approach to Attribution in the Cloud 299

45. Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. Designing access methods for bitem-
poral databases. IEEE Transaction on Knowledge and Data Engineering (TKDE), 10:1–20,
1998.

46. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

47. Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. TrInc: Small Trusted
Hardware for Large Distributed Systems. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2009.

48. Changbin Liu, Ricardo Correa, Harjot Gill, Tanveer Gill, Xiaozhou Li, Shivkumar Muthuku-
mar, Taher Saeed, Boon Thau Loo, and Prithwish Basu. PUMA: Policy-based Unified Multi-
radio Architecture for Agile Mesh Networking. In Proceedings of International Conference on
Communication Systems and Networks (COMSNETS), 2012.

49. Changbin Liu, Richardo Correa, Xiaozhou Li, Prithwish Basu, Boon Thau Loo, and Yun
Mao. Declarative policy-based adaptive mobile ad hoc networking. IEEE/ACM Transactions
on Networking (TON), 2011.

50. Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming Wu,
M. Frans Kaashoek, and Zheng Zhang. D3S: debugging deployed distributed systems. In
Proceedings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2008.

51. Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS Checker: Combating Bugs in
Distributed Systems. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2007.

52. Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Network-
ing: Language, Execution and Optimization. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2006.

53. Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Pet-
ros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking.
Communication of ACM, 2009.

54. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and
Ion Stoica. Implementing Declarative Overlays. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2005.

55. Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative
routing: extensible routing with declarative queries. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMMM), 2005.

56. Yun Mao, Boon Thau Loo, Zachary Ives, and Jonathan M. Smith. MOSAIC: Unified Platform
for Dynamic Overlay Selection and Composition. In Proceedings of ACM International
Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2008.

57. Patrick McDaniel, Kevin Butler, Stephen McLaughlin, Radu Sion, Erez Zadok, and Marianne
Winslett. Towards a Secure and Efficient System for End-to-End Provenance. In Proceedings
of the Workshop on the Theory and Practice of Provenance (TaPP), 2010.

58. C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: a
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems (TODS), 17(1):94–162, 1992.

59. Luc Moreau, Beth Plale, Simon Miles, Carole Goble, Paolo Missier, Roger Barga, Yogesh
Simmhan, Joe Futrelle, Robert E. McGrath, Jim Myers, Patrick Paulson, Shawn Bowers,
Bertram Ludaescher, Natalia Kwasnikowska, Jan Van den Bussche, Tommy Ellkvist, Juliana
Freire, and Paul Groth. The open provenance model (v1.01). http://eprints.ecs.soton.ac.uk/
16148/1/opm-v1.01.pdf.

60. Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.
Provenance-aware storage systems. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ATC), 2006.

http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf
http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf

300 W. Zhou

61. Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer. Provenance for the cloud.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST), 2010.

62. Tsuen-Wan Ngan, Dan Wallach, and Peter Druschel. Enforcing fair sharing of peer-to-peer
resources. In Proceedings of International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

63. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Tim Carver, Matthew R. Pocock, and
Anil Wipat. Taverna: A tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20:3045–3054, 2004.

64. Adam J. Oliner and Alex Aiken. A query language for understanding component interactions in
production systems. In Proceedings of the ACM International Conference on Supercomputing
(ICS), 2010.

65. Hweehwa Pang and Kian-Lee Tan. Verifying Completeness of Relational Query Answers from
Online Servers. ACM Transactions on Information and System Security (TISSEC), 11(2):1–50,
2008.

66. Quagga Routing Suite. http://www.quagga.net/.
67. Anirudh Ramachandran, Kaushik Bhandankar, Mukarram Bin Tariq, and Nick Feamster.

Packets with provenance. Technical Report GT-CS-08-02, Georgia Tech, 2008.
68. Christopher Ré, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation on probabilistic

data. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2007.
69. Christopher Ré and Dan Suciu. Approximate lineage for probabilistic databases. In Proceed-

ings of the International Conference on Very Large Databases (VLDB), 2008.
70. Patrick Reynolds, Charles Edwin Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah,

and Amin Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2006.

71. Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems (TOCS), 10(1):26–52, 1992.

72. Carlos Eduardo Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and Cláudio T. Silva.
Querying and creating visualizations by analogy. IEEE Transactions on Visualization and
Computing Graphics (TOVCG), 13(6):1560–1567, 2007.

73. Margo Seltzer, Keith Bostic, Marshall Kirk Mckusick, and Carl Staelin. An implementation
of a log-structured file system for unix. In Proceedings of the USENIX Winter Conference
(USENIX Winter), 1993.

74. Kulesh Shanmugasundaram, Nasir Memon, Anubhav Savant, and Herve Bronnimann. ForNet:
A distributed forensics network. In Proceedings of International Workshop on Mathematical
Methods, Models and Architectures for Computer Networks Security (MMM-ACNS), 2003.

75. Micah Sherr, Andrew Mao, William R. Marczak, Wenchao Zhou, Boon Thau Loo, and Matt
Blaze. A3: An Extensible Platform for Application-Aware Anonymity. In Proceedings of
Network and Distributed System Security (NDSS), 2010.

76. Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel. Using queries for distributed
monitoring and forensics. In Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys), 2006.

77. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMMM), 2001.

78. Workflow System, Ilkay Altintas, Oscar Barney, and Efrat Jaeger-frank. Provenance collection
support in the kepler scientific workflow system. In Proceedings of the International Prove-
nance and Annotation Workshop (IPAW), 2006.

79. Renata Teixeira and Jennifer Rexford. A measurement framework for pin-pointing routing
changes. In Proceedings of the ACM SIGCOMM Network Troubleshooting Workshop, 2004.

80. Walter F. Tichy. Design, implementation, and evaluation of a revision control system. In
Proceedings of the International Conference on Software Engineering (ICSE), 1982.

81. The Stanford WebBase Project. http://diglib.stanford.edu/~testbed/doc2/WebBase/.
82. Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage. In

Proceedings of Biennial Conference on Innovative Data System Research (CIDR), 2005.

http://www.quagga.net/
http://diglib.stanford.edu/~testbed/doc2/WebBase/

Towards a Data-Centric Approach to Attribution in the Cloud 301

83. Yinglian Xie, Vyas Sekar, Mike Reiter, and Hui Zhang. Forensic analysis for epidemic attacks
in federated networks. In Proceedings of the IEEE International Conference on Network
Protocols (ICNP), 2006.

84. Mingchen Zhao, Wenchao Zhou, Alexander J. T. Gurney, Andreas Haeberlen, Micah Sherr,
and Boon Thau Loo. Private and verifiable interdomain routing decisions. In Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMMM), 2012.

85. Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah
Sherr. Secure network provenance. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2011.

86. Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah
Sherr. Secure network provenance. Technical Report MS-CIS-11-14, University of Pennsylva-
nia, 2011.

87. Wenchao Zhou, Qiong Fei, Shengzhi Sun, Tao Tao, Andreas Haeberlen, Zachary Ives,
Boon Thau Loo, and Micah Sherr. NetTrails: A declarative platform for provenance main-
tenance and querying in distributed systems. In Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD) – demonstration, 2011.

88. Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary Ives,
Boon Thau Loo, and Micah Sherr. Distributed time-aware provenance. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2013.

89. Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao. Efficient
querying and maintenance of network provenance at Internet-scale. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2010.

Software Cruising: A New Technology
for Building Concurrent Software Monitor

Dinghao Wu, Peng Liu, Qiang Zeng, and Donghai Tian

Abstract We introduce a novel concurrent software monitoring technology, called
software cruising. It leverages multicore architectures and utilizes lock-free data
structures and algorithms to achieve efficient and scalable security monitoring.
Applications include, but are not limited to, heap buffer integrity checking, kernel
memory cruising, data structure and object invariant checking, rootkit detection, and
information provenance and flow checking. In the software cruising framework, one
or more dedicated threads, called cruising threads, are running concurrently with the
monitored user or kernel code, to constantly check, or cruise, for security violations.
We believe the software cruising technology would result in a game-changing
capability in security monitoring for the cloud-based and traditional computing and
network systems.

We have developed two prototypical cruising systems: Cruiser, a lock-free
concurrent heap buffer overflow monitor in user space, and Kruiser, a semi-
synchronized non-blocking OS kernel cruiser. Our experimental results showed that
software cruising can be deployed in practice with modest overhead. In user space,
heap buffer overflow cruising incurs only 5 % performance overhead on average for
the SPEC CPU2006 benchmark, and the Apache throughput slowdown is only 3 %
maximum and negligible on average. In kernel space, it is negligible for SPEC, and
3.8 % for Apache. Both technologies can be deployed in large scale for cloud data
centers and server farms in an automated manner.

D. Wu (�) • P. Liu • Q. Zeng
Pennsylvania State University, University Park, PA 16802, USA
e-mail: dwu@ist.psu.edu; pliu@ist.psu.edu; quz105@psu.edu

D. Tian
Beijing Institute of Technology, Beijing, China
e-mail: dhai@bit.edu.cn

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__14,
© Springer Science+Business Media New York 2014

303

mailto:dwu@ist.psu.edu
mailto:pliu@ist.psu.edu
mailto:quz105@psu.edu
mailto:dhai@bit.edu.cn

304 D. Wu et al.

1 Introduction

Existing security-related software monitoring techniques could be roughly broken
down into two categories: control-receiving monitoring and non-control-receiving
monitoring. Control-receiving monitoring is well captured by the classic concept of
reference monitors. A reference monitor defines a set of requirements that governs
the reference validation mechanism. As stated by Schneider [50], “A reference
monitor is guaranteed to receive control whenever any operation in some specified
set is invoked.” This category can be further classified into several classes. For
examples,

• Operating system kernels as a reference monitor for operations on system objects
(e.g., files and processed).

• Memory mapping hardware as a reference monitor (for accesses to memory
pages).

• Processors as a reference monitor. Using tagging memory support, enforce-
ment of information flow security policies could be pushed into the processor
itself [81].

• Inlined reference monitors such as Software-based Fault Isolation (SFI) [75] and
Jif [35]. Through static instrumentation, SFI can monitor a distrusted module
writing or jumping to an address outside its fault domain. Enforced at both
compile time and run time, Jif can impose information flow control and access
control.

• Dynamic taint analysis (DTA) as a reference monitor [37]. Through static or
dynamic instrumentation, or a combination of static and dynamic instrumenta-
tion, DTA can monitor data flows among instructions at byte-level granularity.

Non-control-receiving monitoring is not always bounded with control receiving.
Due to various reasons (e.g., performance overhead), quite a few classes of
monitoring do not expect to receive any control. Their primary goal is to obtain
some specified awareness of the system being protected. Control-receiving moni-
toring is active monitoring; in contrast, non-control-receiving monitoring is passive
monitoring. For examples,

• OS level monitors can collect system call traces for intrusion detection [23] and
backtracking purposes [28].

• Calling context monitors can obtain the calling context information of an
application for performance analysis and debugging purposes.

• Memory performance (e.g., memory leak) monitors can obtain awareness about
certain memory leak problems.

• Architecture level monitors (e.g., shadow gates [67]) could be added to track
information flows.

Fine-grained software monitoring or security enforcement, such as inlined
reference monitor, is often inlined, which delays the execution of the protected
programs. In addition, inlined monitor code runs in the same address space as the

Software Cruising 305

program being monitored. This could cause safety and security issues. The inlined
code may introduce security holes or cause robustness problems. If the monitor
code fails, the original program will fail as well. If the monitor code is blocked, the
original program is often blocked as well. Furthermore, it is difficult to monitor or
enforce concurrency properties with inlined code since the monitor code is scattered
and often needs additional synchronization.

It is quite challenging to parallelize control-receiving monitoring. An example
is dynamic taint analysis, for which parallel monitoring is still not very practical
primarily due to the pervasive data and control dependence among the monitor
and normal program execution. This has been a main cause of high performance
overhead, a major obstacle to adopt concurrent software monitoring in practice.

The performance overhead of concurrent monitors comes from two sources:
logging/monitoring and synchronization between the monitored code (logging)
and monitor threads (monitoring). The latter has implicit blocking cost if the
synchronization primitives used are lock-based. When the monitor threads are
blocked due to external events, such as IO and OS preemptive scheduling, the
threads being monitored will also be blocked in a lock-based synchronization style
even if the monitor threads are not monitoring.

Our key insight is that we can explore multicore architectures for concur-
rent security monitoring using novel lock-free (non-blocking) data structures and
algorithms1 to eliminate blocking cost and thus make the concurrent monitoring
extremely attractive in terms of performance and scalability. Since the synchroniza-
tion between the original program and the monitor is non-blocking, this also makes
the monitoring system monitor kill-safe; that is, the original program won’t fail even
if the monitor is blocked or crashed.

2 Software Cruising

Software Cruising is a novel concurrent software monitoring technology that
migrates security enforcement from the monitored code, either in user or kernel
space, to a concurrent monitor thread. The technology leverages multicore and
multiprocessor architectures and uses lock-free data structures and algorithms
to achieve non-blocking and efficient synchronization between the monitor and
monitored code.

1Technically speaking, lock-free and non-blocking are related, but different concepts. Here, we do
not distinguish the difference and rather use them interchangeably to mean that it is not traditional
lock-based and not blocking.

306 D. Wu et al.

Lock-free
Synchronization

Lock-free
Synchronization

User /
Kernel

Threads

Monitor
Threads

Lock-free
Data

Structures

Fig. 1 The software cruising architecture

2.1 Architecture

In the software cruising framework, one or more dedicated threads, called cruising
threads, are running concurrently with the monitored user- or kernel- code to
constantly check, or cruise, for security violations. Figure 1 shows the architecture.
It leverages the increasingly popular multicore architectures and lock-free (non-
blocking) synchronizations.

The lock-free data structure is used to log information necessary for security
monitoring. The monitored code in either user or kernel space and the monitor
threads do not communicate directly, but rather through the lock-free data structures
using non-blocking synchronization primitives. The key is to use lock-free data
structures and algorithms to achieve the non-blocking property between the monitor
and the code being monitored. The monitor thread(s) are always checking (cruising),
possibly in spare cores on multicore processors, for security violations, but the
user/kernel threads’ executions are not blocked.

2.2 Features

The proposed software cruising technology has a number of distinct features that
make it very attractive.

Leveraging Multicore Architectures for Concurrent Security Monitoring

The software cruising technology leverages multicore architectures with lock-free
and non-blocking synchronization for security monitoring and enforcement. As the
monitor threads running on separate cores, the execution of the original program
is not largely affected, with loose coupled lock-free synchronization. With the
increasingly popular multicore and multiprocessor architectures, this can minimize
the performance overhead on the program being monitored. This also makes
deployment in the cloud environment easier and more flexible since the monitor
code can be run in separate virtual machines.

Software Cruising 307

Protecting Monitor Threads from Malware

Malware, e.g., compromised user/kernel threads or untrusted kernel extensions
hosting rootkits, could poison a monitor thread. To protect monitor threads, we
could apply a new technology we developed recently [78]. Via HAP (hardware-
assisted paging), this technology forces different subjects (e.g., user/kernel threads,
monitor threads, untrusted kernel extensions, trusted kernel extensions, kernel core)
to use different sets of page tables. The set of pages used by the monitor threads
and the lock-free data structures can be flagged as unreadable, unwritable, or
unexecutable as needed so that it can be protected from other threads running in the
protected mode. Moreover, to prevent the monitor from being tampered and provide
guaranteed performance isolation, we can utilize the virtualization technology and
apply the SIM framework [58] to run the monitor process out of the monitored VM,
while collecting heap memory allocation information inside the monitored VM in a
secure and efficient way.

Non-blocking and Lock-Free

Our design is completely non-blocking between the monitor and the monitored
program. Even if the monitor is blocked due to external IO events or OS preemptive
scheduling, the program execution can still make progress without waiting. One of
our designs for user-space heap buffer overflow monitoring adopts lock-free data
structures. Our design of kernel cruising is semi-synchronized, but ensures correct-
ness and non-blocking. Advantages of the lock-free and semi-synchronized designs
include efficiency, scalability, deadlock-free, and kill-safe (see next paragraph on
kill-safe).

Monitor Kill-Safe

Since our design is non-blocking and lock-free, it is safe to kill the monitor and
any other cruising threads. We call this feature monitor kill-safe. In large-scale
distributed systems such as cloud computing, hardware and software could fail
frequently. The monitor kill-safe feature is particularly attractive in such scenarios.

Efficiency

The program being monitored incur very low performance overhead because (1)
the monitoring code is in separate threads (possibly) running on separate cores, and
(2) all communications are non-blocking so that even if the monitor is blocked due
to external IO events or OS preemptive scheduling the program execution can still
make progress without waiting.

308 D. Wu et al.

Scalability

As software becomes more and more concurrent with more cores from hardware, the
synchronization cost is more likely to become a bottleneck. The software cruising
framework scales much better in this scenario since cruisers and user programs are
running concurrently in a lock-free non-blocking manner.

One-to-One and One-to-Many Virtual Machine (VM) Monitoring

Software cruising can be deployed in large-scale (cloud) data centers and server
farms. The software cruising framework has very flexible deployment options such
as one-to-one and one-to-many monitoring. The one-to-one scheme is that one
monitor corresponds to one virtual machine cruising, while the one-to-many is
that one monitor cruises for multiple virtual machines. The one-to-many scheme
is especially attractive for monitoring large-scale clouds.

2.3 Applications

With these distinct features, we sketch out a number of applications of software
cruising. Software cruising can be applied to both user-space and kernel-space
software monitoring. We have conducted two cases studies, one in user space and
the other in kernel space. The security property we choose to monitor is heap buffer
overflow. In user space, we developed Cruiser, a lock-free concurrent heap buffer
overflow monitor (See Sect. 3 for more details). In kernel space, we developed
Kruiser, a semi-synchronized non-blocking OS kernel cruiser (See Sect. 4 for more
details).

Software cruising has flexible deployment options. It can be applied to appli-
cation and system software running in a single computer, as well as large-scale
distributed and networked systems such as data centers in the cloud computing
environment. In such scenario, the monitor can be run in separate virtual machines
with different protection level and makes the cruising system more scalable and
more secure.

Other applications of software cruising include, but are not limited to, data struc-
ture and object invariant checking, rootkit detection, and information provenance
and flow checking. For some good engineering reasons, low-level system code
often contains features, e.g. custom linked list, that are hard to abstract and verify
statically [11,13,31]. Instead, we can apply software cruising to dynamically check
invariants; that is, we cruise to check that the data structure in memory is a well-
formed.

Software Cruising 309

3 Cruiser: Lock-Free Concurrent Heap Buffer
Overflow Monitoring

In this section, we introduce the design of Cruiser, a lock-free concurrent heap
buffer overflow monitor in user space. Interested readers are referred to Zeng, Wu,
and Liu [82] for more technical details.

3.1 Introduction

Buffer overflow attacks are often the first step taken by multistage exploits. For
example, the multistage attack example shown in MulVAL [40] starts with either
CVE-2002-0392 [71] or CVE-2003-0252 [72], both are buffer overflow related
vulnerabilities. Despite many counter measures developed, buffer overflow based
attacks are still a great threat.

As a case study, we have applied software cruising to the heap buffer overflow
problem and developed a novel dynamic heap buffer overflow detector, called
Cruiser. The key ideas are (1) to create a dedicated monitor thread, which runs
concurrently with user threads to cruise over, or keep checking constantly, dynami-
cally allocated buffers against overflows; and (2) to utilize lock-free data structures
and non-blocking algorithms, through which user threads communicate with the
monitor thread with minimum overhead and without being blocked. The first idea
leverages increasingly popular multicore architectures for security monitoring, and
the second minimizes the communication and synchronization cost by removing the
blocking overhead.

3.2 Design

Our method is canary-based [15]. Each dynamically allocated buffer is surrounded
by two canary words; as long as a canary is found corrupted, an overflow is
detected. Buffer addresses are collected in a lock-free data structure efficiently
without blocking user threads. By traversing the data structure, buffers on heap are
under constant surveillance of the concurrent monitor thread.

Cruiser Architecture

To efficiently maintain dynamic memory allocation information, we design the
cruiser architecture such that the communication between the original program and
the monitor is loosely coupled and non-blocking. As shown in Fig. 2, malloc calls
are intercepted to allocate additional space for canary and place the allocated buffer
information onto a list of ring data structures. There is one ring per user thread so

310 D. Wu et al.

…

User
Threads

Custom
Lock-free

List

Deliver
Thread

Monitor
Thread

malloc
hook

List of
Rings

malloc
hook

Fig. 2 The cruiser architecture

that there is no race conditions between two malloc calls. The malloc calls then
return promptly, and one or several deliver threads move the metadata from rings to
a custom lock-free linked list. The monitor thread cruises over the segmented list to
check buffer overflows.

Ring

The ring data structure is based on the single-producer single-consumer FIFO wait-
free ring buffer proposed by Lamport [32]. This algorithm allows a producer and
a consumer to operate concurrently, with very low synchronization overhead as the
producer and the consumer are synchronized via simple read/write instructions on
the two control variables, the ring head and tail.

Segmented Lock-Free Linked List

Our custom lock-free linked list is segmented. The list consists of segments, each
of which is a linked list itself. We construct one segment for each user thread to
minimize the race conditions on list operations. Each segment has a dummy node
head which is never removed. Also, the first non-dummy node will not be deleted
until a new node is inserted before it. Thus the lock-free node insertion after the
dummy node can be simply implemented using an atomic compare-and-swap (CAS)
instruction. The buffer release and node deletion in the lock-free linked list is more
complicated and we refer readers to our Cruiser paper [82] on the technical details.
This custom lock-free linked list is very efficient and has the following distinct
features: (1) Wait-free access and zero-contention; (2) No ABA problem [25]; and
(3) No need to use special memory reclamation such as reference counters or hazard
pointers [33].

Software Cruising 311

3.3 Results

We evaluated Cruiser on its effectiveness, execution overhead, and scalability with
varying number of threads.

Effectiveness

We tested the effectiveness of Cruiser on the SAMATE Reference Dataset
(SRD) [38], as well as a set of well-known real-world exploits (wu-ftpd [51],
Sudo [52], CVS [53], libHX [55], Lynx [56], and Firefox [54]). The experiments
show that Cruiser can detect all the overflows, duplicate and invalid buffer frees.

Performance Overhead

We evaluated the performance overhead of Cruiser with the SPEC CPU2006 Integer
benchmark suite. The results show that Cruiser incurs very low execution overhead:
5 % on average for the eager buffer release option and 12.5 % for the lazy option.

Scalability

We also evaluated Cruiser on the multithreaded setting. We configured the Apache
web server with different number of concurrent requests (from 1 to 110) and
tested Cruiser’s scalability. The experimental results show that Cruiser scales well.
The maximum slowdown of the Apache throughput is about 3 % and the average
slowdown is negligible.

4 Kruiser: Semi-synchronized Non-blocking
OS Kernel Cruising

In this section, we introduce the design of Kruiser, a semi-synchronized non-
blocking OS kernel cruiser. Interested readers are referred to Tian et al. [66] for
more technical details.

4.1 Introduction

It is desirable to adopt software cruising to monitor OS kernel memory integrity
and other safety and liveness properties. The lock-free and non-blocking properties

312 D. Wu et al.

of software cruising are especially attractive in kernel space since there are many
tasks, events, and execution threads working simultaneously in kernel. If we use
lock-based synchronizations for monitoring, it is likely that it will affect the kernel
performance and execution characteristics.

Cruiser, as presented in the previous section, cannot be directly applied to
monitor kernel buffer overflows due to the following reasons: (1) user- and kernel-
space heap management schemes are quite different; (2) the runtime execution
characteristics of kernel is quite different from user programs; and (3) OS kernel
usually is not just one standalone program like typical user-space programs.

We have developed a prototype—called Kruiser, which stands for kernel cruis-
ing—that can monitor integrity of OS kernel memory. In kernel space, objects
(or buffers) with the same size (from kernel or user-space programs) are usually
allocated in the same page(s). Kruiser leverages this kernel memory management
characteristic information and cruises over pages at first level, and individual buffers
at the second level. Kruiser poses minimal changes to the existing OS kernel and
can be deployed in large-scale cloud data centers to monitor many virtual machines
scalably with the one-to-many virtual machine monitoring scheme.

4.2 Design

Kernel space presents new and more difficult challenges in designing software
cruising systems.

Challenges

Synchronization

Synchronization is vital to ensure the monitor process locate and check live buffers
efficiently and reliably without incurring false positives. To achieve highly efficient
concurrent monitoring, we explore page-level information and design a semi-
synchronized algorithm which introduces zero contention into kernel operations
and performs non-blocking heap monitoring without incurring false positives or
suspending the system.

Self-Protection

As a countermeasure against buffer overflow attacks, our component can become
an attack target itself. We rely on a monitor process that keeps checking
constantly—that is, cruising—the kernel heap integrity. This busy process can
be an explicit attack target. By killing the monitor process, attackers completely
disable the detection. Attackers can also tamper the data structure needed by our

Software Cruising 313

component to mislead or evade the detection. Thus we need to protect the safety of
the monitor process and ensure the integrity of related data structures. To address
this challenge, we apply the virtualization technology to deploy the monitor process

Monitor VM Monitored VM

Memory Mapper

App User

Kernel

VMM
(Xen)

Hardware

Kruiser App

Fig. 3 The Kruiser
architecture (using
virtualization and direct
memory mapping)

into a trusted environment. To ensure the same efficiency as in-the-box monitoring,
we leverage the Direct Memory Mapping (DMM) technique, which allows the mon-
itor process to access the monitored OS memory. To protect our data structure from
being overflowed or underflowed, we apply two write-protected pages surrounding
the data structure.

Architecture

Kruiser attaches one canary word at the end of each heap buffer and runs a separate
monitor process, which keeps scanning, or cruises, the canaries to detect buffer
overflows and runs concurrently with the monitored system. As shown in Fig. 3,
Kruiser, or the monitor process, is run in a separate VM than the monitored OS to
strengthen self-protection. The heap buffer metadata is kept in the monitored VM
to achieve efficient updating. The monitor cruises over the heap metadata via an
efficient technique called direct memory mapping. Once a kernel heap buffer canary
is found corrupted, an overflow is reported.

The design of Kruiser is based on Linux and the Xen hypervisor. The Kruiser
system can be divided into three parts: VMM, Dom0 VM, and DomU VM (the
monitored VM). Dom0 VM contains the monitor process and the custom driver,
which reside in user space and kernel space, respectively. The custom driver is used
to help the monitor process release memory but with its page tables retained. A tiny
component, namely Memory Mapper, inside the VMM is used to map the kernel
memory of the monitored VM to the page table entries retained by the custom driver.
A static array, called Page Identity Array (PIA), stores all the metadata at page level,
and the interposition code reside in the kernel space of DomU VM.

314 D. Wu et al.

Kernel Cruising

Kruiser keeps the metadata at page level and stores them in a static array called Page
Identity Array (PIA). This array, however, can incur a variety of race conditions
and atomicity issues. Introducing additional complex synchronization on PIA will
inevitably affect the kernel performance. Instead, we design a novel algorithm that
leverages kernel behavior to resolve the race conditions. To avoid race conditions
on concurrent PIA entry updates, we leverage the critical section that are already
exist in the kernel code that adds or removes a page from the page table to get a free
ride with negligible cost for the PIA array entry update. Concurrent PIA entry read
and write may cause inconsistent values being used. Instead of avoiding this read-
write race condition, we let it occur, but avoid using inconsistent values by detecting
inconsistent version numbers. Each PIA entry contains a version number which is
incremented whenever the page corresponding to the PIA entry is added or removed
from the heap page pool. The inconsistent values can be detected by comparing the
version numbers before and after the read.

This non-blocking algorithm is constructed using simple reads, writes, and
memory barriers without complicated and expensive synchronization mechanisms.
The monitor process is lightly synchronized by reading version numbers twice,
while other processes manipulating heap pages make progress without being syn-
chronized or blocked by the monitor. In other words, the synchronization is one-way.
That is why we call it semi-synchronized non-blocking kernel cruising. It is semi-
synchronized in another sense. On the PIA entries, write-write is synchronized with
a free-ride from the existing kernel functions, while read-write is not synchronized.
It resolves the concern of a variety of subtle race conditions without the need to
freeze the entire system for recheck, but still does not incur any false positives.

4.3 Results

To evaluate Kruiser, we developed a prototype based on 32-bit Linux and the Xen
hypervisor.

Effectiveness

We conducted effectiveness tests on three vulnerabilities [47, 62] deliberately
introduced in the Linux kernel and two real-world heap buffer overflow vulnera-
bilities [69, 70] in Linux. Our experimental results indicate that Kruiser is effective
in defending against kernel heap buffer overflow attacks.

Performance Overhead

We evaluated the performance overhead of Kruiser on the SPEC CPU2006 bench-
mark. Our results showed that the average execution performance overhead is

Software Cruising 315

negligible. When the slab allocation is frequent, the performance overhead is a
little bit higher, such as in gcc, but the maximal performance overhead is still less
than 3 %.

Scalability

We also evaluated the scalability of Kruiser on the Apache server in a multithreaded
setting. The setup is similar to that of Cruiser (see Sect. 3.3). Our experimental
results showed that the average slowdown of the Apache throughput is 3.8 and 7.9 %
for a more secure Kruiser option.

5 Discussion

In this section, we discuss several advanced options and potential future application
of software cruising.

5.1 Detection Latency

Since our software cruising is non-blocking, our monitoring does not suspend the
system being monitored for detection. Thus, the detection latency becomes a critical
indicator of the detection effectiveness. The time it takes a software cruising system
to complete whole system monitoring once is called cruising cycle. It is important
to keep the cruising cycle short so that we can detect an exploit quick enough. For
the two applications we developed, the cruising cycles are both tunable; that is,
we can configure the software cruising systems make small cruising cycle. Cruiser
can achieve this with more than one monitor thread and keep the cruising list
short enough. Each monitor thread only cruises part of the linked list. This can
be achieved easily since the lock-free linked list is segmented. Kruiser can achieve
this in a similar way. We can logically divide the metadata data structure into several
segments and deploy equal number of monitor threads, so that each monitor thread
only needs to be responsible for one segment.

5.2 Guaranteed Detection

Our cruising systems race with attackers: As long as an exploit cannot succeed
within a cruise cycle after a canary is corrupted, it is bound to be prevented. In
addition, even an attacker has compromised the system by exploiting a (kernel)
heap buffer overflow vulnerability and enabled a remote shell with root privileges,
the canary corrupt should be detected before the attacker keys in the first command,
since a cruise cycle is normally less than a few milliseconds. In this sense, we “raised

316 D. Wu et al.

a bar” for attackers. However, automatic attack vectors such as worms can be fast
and advanced attacks may directly manipulate our data structures or try to recover
the corrupted canaries using the keys. Moving the data structures and keys to a
separate VM gains security but can lead to high performance overhead. Instead,
we combine Secure-In-VM (SIM) [58] and secure canary generation to prevent
attackers from recovering the corrupted canary, even after the system has been
compromised and entirely controlled by attackers.

With the In-VM protection and secure canary generation, attackers can not hide
their attacks in that: (1) The In-VM protection prevent attackers from manipulating
metadata; and (2) The canary generation based on the stream cipher guarantees
the difficulty for attackers to recover the corrupted canaries within one cruising
cycle. Therefore, the attacks are bound to be detected within one cruising cycle
after compromising the system, unless the attackers know the exact canary value
to be corrupted beforehand, which usually implies the overread and overrun
vulnerabilities overlap for exactly the same buffer area and which is very rare.

Here we assume that the attacker does not reboot the system after a successful
exploit to evade detection. We can add an additional cruiser check, to see whether
the system has been compromised or not, in the system shutdown (reboot) routine
to relax this assumption. Combined with the checkpoints technique, this guarantee
enables a system to recover the nearest clean state.

5.3 Cloud Cruising

The software cruising approach leverages increasingly popular multicore architec-
tures; its efficiency and scalability show that it can be applied to data centers and
server farms in practice. Cruiser can be applied to shrink-wrapped software in an
automated manner with negligible cost. The scheme in our prototype Kruiser is
one-to-one monitoring on VMs. An advanced option in this design space is the one-
to-many scheme; that is, one VM (monitor) cruises over multiple VMs, especially
for the VMs that reside in the same physical machine. This is vital to the scalable
online monitoring for cloud data centers and server farms.

Large data centers using shipping-containers packed with thousands of
servers each are common nowadays. Therefore, scalable deployment is a critical
requirement for intrusion detection measures in data centers. Unlike traditional
interposition-based monitors, which may intervene normal functionalities
frequently, Kruiser imposes minimal interference and performs monitoring in
parallel with the monitored VM. Moreover, with the one-to-many option, one
Kruiser instance is able to monitor multiple VMs given an acceptable detection
latency much longer than the cruising cycle, without affecting the guaranteed
detection property. In addition, the performance isolation provided by the
underlying VMM ensures the monitor process and the monitored VM do not abuse
computing resources to interfere with each other, which is a desirable property for
users.

Software Cruising 317

With the popularity of multicore architectures, servers built with many cores are
more and more common. The hardware evolution trend embraces the concurrent
monitoring fashion, as the cost for a unit core running a monitor instance decreases
sharply, and the extra energy consumption by one core is relatively low for machines
with hundreds of cores. Therefore, the scalability and low cost properties imply that
Cruiser and Kruiser can be practically applied to large data centers and server farms,
as one of the intrusion detection instruments in practice.

6 Related Work

In this section, we present related work on buffer overflow detection, system
integrity, information flow integrity, and self-healing software.

6.1 Buffer Overflow Detection

Over the past few decades, there has been extensive research in this area, including
buffer bounds checking [2–4, 7, 18, 26, 36, 48, 68, 74], canary checking [15, 24, 46],
return address shadow stack or stack split [12, 21, 44, 64, 79], non-executable
memory [61, 65], non-accessible memory [20, 22, 73], randomization and obfus-
cation [6, 9, 14, 65], and execution monitoring [1, 10, 16, 29, 49].

Despite so many countermeasures, only a few of them, such as StackGuard [15],
ASLR (Address Space Layout Randomization) [9, 65], NX memory [61, 65], and
DieHard [8] and DieHarder [39], are widely deployed in production systems. In
Table 1, we compare Cruiser with those widely deployed tools and techniques.

Table 1 Comparison of some widely deployed tools and technologies with Cruiser

Stack-Guard ASLR NX
DieHard &
DieHarder Cruiser

Low performance overhead • • • ◦ •
Easy to deploy and apply • • • ◦ •
No false alarms • • • • •
Mainstream platform compatible • • • • •
Program semantics loyalty • • • • •
Legacy code compatible • • •
Binary code compatible • •
No need for recompilation • •
Able to locate corrupted buffers • •
Leveraging multicore architectures •
Guaranteed detection or prevention ◦ • ◦ •
Deployed to the field • • • • �

Legend: • means positive; ◦ means partially or almost; � means just open-sourced

318 D. Wu et al.

Software cruising shares many features with these techniques, including low
performance overhead, easiness to deploy and apply, no false alarms, compatibility
with mainstream platforms, and program semantics loyalty.

Cruiser bears many similar features with StackGuard [15]. Kruiser exhibits
excellent performance on system kernel integrity checking, with novel features
such as secure monitor protection and guaranteed detection (even after an initial
successful exploit). In addition, Software cruising systems also have the following
features: non-blocking and lock-free monitoring, monitor kill-safe, compatibility
with legacy code, no need for recompilation, i.e. working with binary executables,
ability to leverage multicore architectures, guaranteed detection of attacks (not
bypassable), secure monitor protection, and ability to precisely locate corrupted
buffers, which is critical for testing, debugging, and security monitoring.

6.2 System Integrity

Existing OS integrity protection techniques can be broken down into three cate-
gories: (1) code integrity [45,57], (2) data integrity [5,63], (3) control flow integrity
and control data integrity [1, 42, 76, 77]. Software cruising for data structure and
object invariants in general falls into the third category. HookSafe [76] protects
kernel hooks by relocating them to a dedicated page-aligned memory space. In
contrast, software cruising does not do any hook relocating. The technique proposed
by Petroni and Hicks [42] detects kernel control flow attacks by identifying
persistent yet unexpected modifications of the kernel’s CFG. It does not use
any canaries. In contrast, software cruising can be applied to detect control flow
attacks by comparing linkages between canaries with the linkages between the
corresponding kernel data structures. Soft-Timer [77] uses soft timer interrupts
while software cruising does not use any interrupt.

6.3 Information Flow Integrity

Security models for information flow controls were studied many years ago [17].
Recently, Decentralized Information Flow Control (DIFC) [19, 30, 34, 80] has
attracted much interest. Compared to classic information flow control researches,
which are model-oriented, DIFC is targeting pragmatic, system-oriented infor-
mation flow control. DIFC projects have developed more practical and more
usable declassification measures and information flow tracking (also called “taint
tracking”) mechanisms. Although taint tracking has been implemented in design-
from-scratch DIFC systems such as HiStar [80], so far fine-grained information
flow tracking still cannot be made practical in commodity software systems. This
problem is a main motivation behind our plan to apply software cruising to
information provenance and flow integrity checking.

Software Cruising 319

6.4 Self-Healing Software

Self-healing (or self-fixing, self-repairing) software such as the Network Worm
Vaccine Architecture [27, 43, 60], ClearView [41], and SHADOWS [59], aims to
fix itself when something monitored goes wrong. However, runtime protection or
monitoring mechanisms are often too expensive in practice to be applied in large
scale. None of these solutions utilize non-blocking lock-free data structures and
algorithms to reduce monitoring overhead. The software cruising technology can
be combined with the self-healing software technology to make it more affordable
since to be self-healing it has to be self-monitoring first!

7 Conclusion

We have presented a novel concurrent software monitoring technology, called
software cruising. It leverages multicore architectures and utilizes lock-free data
structures and algorithms to achieve efficient and scalable security monitoring.
Applications include, but are not limited to, heap buffer integrity checking, kernel
memory cruising, data structure and object invariant checking, rootkit detection, and
information provenance and flow checking. In the software cruising framework, one
or more dedicated threads, called cruising threads, are running concurrently with the
monitored user or kernel code, to constantly check, or cruise, for security violations.
We believe the software cruising technology would result in a game-changing
capability in security monitoring for the cloud-based and traditional computing and
network systems.

We have developed two prototypical systems: Cruiser, a lock-free concurrent
heap buffer overflow monitor in user space, and Kruiser, a semi-synchronized
non-blocking OS kernel cruiser. Cruiser is legacy code compatible and can be
automatically applied to protect shrink-wrapped software and systems (source code
or binary executables) transparently, and thus can gain extra security with virtually
no cost for heap buffer overflow checking as StackGuard for stack buffers. Kruiser
has a novel algorithm on concurrent, but semi-synchronized non-blocking, kernel
heap integrity cruising. It is not fully synchronized, to reduce the performance
overhead, but still ensures correctness regarding race conditions, deadlocks, and
other typical concurrency issues.

Our preliminary results showed that software cruising can be deployed in practice
with modest overhead. In user space, heap buffer overflow cruising incurs only
5 % performance overhead on average for the SPEC CPU2006 benchmark, and the
Apache throughput slowdown is only 3 % maximum and negligible on average. In
kernel space, it is negligible for SPEC, and 3.8 % for Apache. Both technologies can
be deployed in large scale for (cloud) data centers and server farms in an automated
manner.

320 D. Wu et al.

Acknowledgements This research was supported in part by the National Science Foundation
(NSF) under the grants CNS-1223710 and CNS-0905131, the Army Research Office (ARO) under
the grant W911NF-09-1-0525 (MURI), and the Air Force Office of Scientific Research (AFOSR)
under the grant W911NF1210055.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings of the
12th ACM Conference on Computer and Communications Security (CCS ’05), pp. 340–353
(2005)

2. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: an efficient and
backwards-compatible defense against out-of-bounds errors. In: USENIX Security ’09,
pp. 51–66 (2009)

3. Austin, T.M., Breach, S.E., Sohi, G.S.: Efficient detection of all pointer and array access errors.
In: Proceedings of the ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’04, pp. 290–301 (2004)

4. Avijit, K., Gupta, P.: Tied, libsafeplus, tools for runtime buffer overflow protection. In:
USENIX Security ’04, pp. 4–4 (2004)

5. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of kernel data
structure invariants. In: ACSAC ’08: Proceedings of the 2008 Annual Computer Security
Applications Conference, pp. 77–86. IEEE Computer Society, Washington, DC, USA (2008).
DOI http://dx.doi.org/10.1109/ACSAC.2008.29

6. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Randomized instruc-
tion set emulation to disrupt binary code injection attacks. In: Proceedings of the ACM
conference on Computer and communications security, CCS ’03, pp. 281–289 (2003)

7. Berger, E.D.: HeapShield: Library-based heap overflow protection for free. Tech. Report
UMCS TR-2006-28, Univ. of Mass. Amherst (2006)

8. Berger, E.D., Zorn, B.G.: DieHard: probabilistic memory safety for unsafe languages.
In: Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’06, pp. 158–168. ACM, New York, NY, USA (2006).
DOI http://doi.acm.org/10.1145/1133981.1134000. URL http://doi.acm.org/10.1145/1133981.
1134000

9. Bhatkar, E., Duvarney, D.C., Sekar, R.: Address obfuscation: an efficient approach to combat
a broad range of memory error exploits. In: USENIX Security ’03, pp. 105–120 (2003)

10. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In:
Proceedings of the 7th symposium on Operating systems design and implementation, OSDI
’06, pp. 147–160. USENIX Association, Berkeley, CA, USA (2006). URL http://dl.acm.org/
citation.cfm?id=1298455.1298470

11. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamaric, Z.: A reachability predicate for analyzing
low-level software. In: O. Grumberg, M. Huth (eds.) Proceedings of the 13th international con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
Lecture Notes in Computer Science, vol. 4424, pp. 19–33. Springer Berlin Heidelberg (2007).
DOI 10.1007/978-3-540-71209-1_4. URL http://dx.doi.org/10.1007/978-3-540-71209-1_4

12. Chiueh, T.C., Hsu, F.H.: RAD: A compile-time solution to buffer overflow attacks. In:
Proceedings of the The 21st International Conference on Distributed Computing Systems
(ICDCS ’01), pp. 409–417 (2001)

13. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and property checking
for low-level code. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’09, pp. 302–314. ACM, New York, NY, USA
(2009). DOI http://doi.acm.org/10.1145/1480881.1480921. URL http://doi.acm.org/10.1145/
1480881.1480921

http://doi.acm.org/10.1145/1133981.1134000
http://doi.acm.org/10.1145/1133981.1134000
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://dl.acm.org/citation.cfm?id=1298455.1298470
http://dx.doi.org/10.1007/978-3-540-71209-1_4
http://doi.acm.org/10.1145/1480881.1480921
http://doi.acm.org/10.1145/1480881.1480921

Software Cruising 321

14. Cowan, C., Beattie, S.: PointGuard: protecting pointers from buffer overflow vulnerabilities.
In: USENIX Security ’03, pp. 91–104 (2003)

15. Cowan, C., Pu, C.: StackGuard: automatic adaptive detection and prevention of buffer-overflow
attacks. In: USENIX Security ’98, pp. 63–78 (1998)

16. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong,
A., Hiser, J.: N-variant systems: a secretless framework for security through diversity. In:
USENIX Security ’06, pp. 105–120 (2006)

17. Denning, D.: A lattice model of secure information flow. Communications of the ACM 19(5),
236–243 (1976)

18. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detecting all buffer
overflows in C. In: Proceedings of the ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’03, pp. 155–167 (2003)

19. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E., Mazieres,
D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos operating system.
In: Proceedings of the Nineteenth ACM SIGOPS symposium on Operating systems principles,
SOSP ’05 (2005)

20. Electric Fence: Malloc debugger. Http://directory.fsf.org/project/ElectricFence/
21. Frantzen, M., Shuey, M.: StackGhost: Hardware facilitated stack protection. In: USENIX

Security ’01, pp. 55–66 (2001)
22. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors. In: the Winter

1992 Usenix Conference, pp. 125–136 (1992)
23. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.

Journal of Computer Security 6(3), 151–180 (1998). URL http://dl.acm.org/citation.cfm?id=
1298081.1298084

24. IBM: ProPolice detector. Http://www.trl.ibm.com/projects/security/ssp/
25. IBM System/370 Extended Architecture, Principles of Operations: IBM Publication No. SA22-

7085 (1983)
26. Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., Wang, Y.: Cyclone: A safe

dialect of C. In: USENIX Annual Technical Conference (ATC ’02), pp. 275–288 (2002)
27. Keromytis, A.D.: The case for self-healing software. In: Aspects of Network and Information

Security: Proceedings NATO Advanced Studies Institute (ASI) on Network Security and
Intrusion Detection (2005)

28. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP ’03, pp. 223–236. ACM, New York, NY,
USA (2003). DOI 10.1145/945445.945467. URL http://doi.acm.org/10.1145/945445.945467

29. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding. In:
USENIX Security ’02, pp. 191–206 (2002)

30. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris, R.:
Information flow control for standard OS abstractions. In: Proceedings of the twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP (2007)

31. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: Confer-
ence record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’06, pp. 115–126. ACM, New York, NY, USA (2006).
DOI http://doi.acm.org/10.1145/1111037.1111048. URL http://doi.acm.org/10.1145/1111037.
1111048

32. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3(2),
125–143 (1977)

33. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans.
Parallel Distrib. Syst. 15(6), 491–504 (2004)

34. Myers, A., Liskov, B.: Protecting privacy using the decentralized label model. ACM Transac-
tions on Computer Systems (2000)

Http://directory.fsf.org/project/ElectricFence/
http://dl.acm.org/citation.cfm?id=1298081.1298084
http://dl.acm.org/citation.cfm?id=1298081.1298084
Http://www.trl.ibm.com/projects/security/ssp/
http://doi.acm.org/10.1145/945445.945467
http://doi.acm.org/10.1145/1111037.1111048
http://doi.acm.org/10.1145/1111037.1111048

322 D. Wu et al.

35. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In: Proceedings
of the sixteenth ACM symposium on Operating systems principles, SOSP ’97, pp. 129–142.
ACM, New York, NY, USA (1997). DOI 10.1145/268998.266669. URL http://doi.acm.org/10.
1145/268998.266669

36. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: type-safe retrofitting
of legacy software. ACM Trans. Program. Lang. Syst. 27(3), 477–526 (2005)

37. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and signature-
generation of exploits on commodity software. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS ’05) (2005)

38. NIST. SAMATE Reference Dataset: Http://samate.nist.gov/SRD
39. Novark, G., Berger, E.D.: DieHarder: securing the heap. In: Proceedings of the 17th ACM

conference on Computer and communications security, CCS ’10, pp. 573–584. ACM, New
York, NY, USA (2010). DOI http://doi.acm.org/10.1145/1866307.1866371. URL http://doi.
acm.org/10.1145/1866307.1866371

40. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security analyzer.
In: Proceedings of the 14th conference on USENIX Security Symposium - Volume 14, pp. 113–
128. USENIX Association, Berkeley, CA, USA (2005). URL http://dl.acm.org/citation.cfm?
id=1251398.1251406

41. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C.,
Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.F., Zibin, Y., Ernst, M.D., Rinard, M.:
Automatically patching errors in deployed software. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pp. 87–102. ACM, New York,
NY, USA (2009). DOI http://doi.acm.org/10.1145/1629575.1629585. URL http://doi.acm.org/
10.1145/1629575.1629585

42. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow attacks. In:
Proceedings of the 14th ACM conference on Computer and communications security, CCS
’07, pp. 103–115 (2007)

43. Portokalidis, G., Keromytis, A.D.: REASSURE: A self-contained mechanism for healing
software using rescue points. In: Advances in Information and Computer Security—6th
International Workshop, IWSEC 2011, Tokyo, Japan, November 8–10, 2011. Proceedings,
Lecture Notes in Computer Science, vol. 7038, pp. 16–32. Springer (2011)

44. Prasad, M., Chiueh, T.C.: A binary rewriting defense against stack based buffer overflow
attacks. In: Usenix Annual Technical Conference (Usenix ATC ’03), pp. 211–224 (2003)

45. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with VMM-based
memory shadowing. In: Proceedings of the 11th international conference on Recent advances
in intrusion detection, RAID ’08 (2008)

46. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-based overflows.
In: Proceedings of the 17th Usenix Conference on System Administration (LISA ’03), pp. 51–
60. Usenix Association, Berkeley, CA, USA (2003)

47. Roethlisberge, D.: Omnikey Cardman 4040 Linux driver buffer overflow (2007). http://www.
securiteam.com/unixfocus/5CP0D0AKUA.html

48. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceedings of the
11th Annual Network and Distributed System Security Symposium (NDSS ’04), pp. 159–169
(2004)

49. Salamat, B., Jackson, T., Gal, A., Franz, M.: Orchestra: intrusion detection using parallel
execution and monitoring of program variants in user-space. In: Proceedings of the 4th ACM
European conference on Computer systems (EuroSys ’09), pp. 33–46 (2009)

50. Schneider, F.: Blueprint for a science of cybersecurity. The Next Wave 19(2), 47–57 (2012)
51. SecurityFocus: Wu-ftpd file globbing heap corruption (2001). http://www.securityfocus.com/

bid/3581
52. SecurityFocus: Sudo password prompt heap overflow (2002). http://www.securityfocus.com/

bid/4593
53. SecurityFocus: CVS directory request double free heap corruption (2003). http://www.

securityfocus.com/bid/6650

http://doi.acm.org/10.1145/268998.266669
http://doi.acm.org/10.1145/268998.266669
Http://samate.nist.gov/SRD
http://doi.acm.org/10.1145/1866307.1866371
http://doi.acm.org/10.1145/1866307.1866371
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://doi.acm.org/10.1145/1629575.1629585
http://doi.acm.org/10.1145/1629575.1629585
http://www.securiteam.com/unixfocus/5CP0D0AKUA.html
http://www.securiteam.com/unixfocus/5CP0D0AKUA.html
http://www.securityfocus.com/bid/3581
http://www.securityfocus.com/bid/3581
http://www.securityfocus.com/bid/4593
http://www.securityfocus.com/bid/4593
http://www.securityfocus.com/bid/6650
http://www.securityfocus.com/bid/6650

Software Cruising 323

54. SecurityFocus: Mozilla Firefox and Seamonkey regular expression parsing heap buffer
overflow (2009). http://www.securityfocus.com/bid/35891

55. SecurityFocus: libHX ‘HX_split()’ remote heap-based buffer overflow (2010). http://www.
securityfocus.com/bid/42592

56. SecurityFocus: Lynx browser ‘convert_to_idna()’ function remote heap based buffer overflow
(2010). http://www.securityfocus.com/bid/42316

57. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide lifetime
kernel code integrity for commodity OSes. In: Proceedings of the twenty-first ACM SIGOPS
symposium on Operating systems principles, SOSP ’07, pp. 335–350 (2007)

58. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware virtualiza-
tion. In: Proceedings of the 16th ACM conference on Computer and communications security,
CCS ’09, pp. 477–487 (2009)

59. Shehory, O.: SHADOWS: Self-healing complex software systems. In: Automated Software
Engineering, pp. 71–76 (2008). DOI 10.1109/ASEW.2008.4686296

60. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.D.: ASSURE:
automatic software self-healing using rescue points. In: M.L. Soffa, M.J. Irwin (eds.) ASPLOS,
pp. 37–48. ACM (2009)

61. Solar Designer: Non-executable user stack (1997). Http://www.openwall.com/linux/
62. sqrkkyu, twzi: Attacking the core: Kernel exploiting notes (2007). Http://phrack.org/issues.

html
63. Srivastava, A., Erete, I., Giffin, J.: Kernel data integrity protection via memory access control.

Tech. Rep. GT-CS-09-04, Georgia Institute of Technology (2009)
64. StackShield: (2000). Http://www.angelfire.com/sk/stackshield/
65. The PaX project: Http://pax.grsecurity.net/
66. Tian, D., Zeng, Q., Wu, D., Liu, P., Hu, C.: Kruiser: Semi-synchronized non-blocking

concurrent kernel heap buffer overflow monitoring. In: Proceedings of the 19th Network and
Distributed System Security Symposium, NDSS ’12 (2012)

67. Tiwari, M., Wassel, H.M., Mazloom, B., Mysore, S., Chong, F.T., Sherwood, T.: Complete
information flow tracking from the gates up. In: Proceedings of the 14th international confer-
ence on Architectural support for programming languages and operating systems, ASPLOS
XIV, pp. 109–120. ACM, New York, NY, USA (2009). DOI 10.1145/1508244.1508258. URL
http://doi.acm.org/10.1145/1508244.1508258

68. Tsai, T.K., Singh, N.: Libsafe: Transparent system-wide protection against buffer overflow
attacks. In: Proceedings of the 2002 International Conference on Dependable Systems and
Networks (DSN ’02), pp. 541–541 (2002)

69. US-CERT/NIST: CVE-2008-1673. Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2008-1673

70. US-CERT/NIST: CVE-2009-2407. Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2009-2407

71. US-CERT/NIST: National vulnerability database, CVE-2002-0392. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2002-0392

72. US-CERT/NIST: National vulnerability database, CVE-2003-0252. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2003-0252

73. Valgrind: Http://valgrind.org/
74. Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A first step towards automated detection

of buffer overrun vulnerabilities. In: Proceedings of the 7th Network and Distributed System
Security Symposium, NDSS ’00, pp. 3–17 (2000)

75. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
In: Proceedings of the fourteenth ACM symposium on Operating systems principles, SOSP
’93, pp. 203–216. ACM, New York, NY, USA (1993). DOI 10.1145/168619.168635. URL
http://doi.acm.org/10.1145/168619.168635

76. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight hook
protection. In: CCS ’09: Proceedings of the 16th ACM Conference on Computer and
Communications Security (2009)

http://www.securityfocus.com/bid/35891
http://www.securityfocus.com/bid/42592
http://www.securityfocus.com/bid/42592
http://www.securityfocus.com/bid/42316
Http://www.open wall.com/linux/
Http://phrack.org/issues.html
Http://phrack.org/issues.html
Http://www.angelfire.com/sk/stackshield/
Http://pax.grsecurity.net/
http://doi.acm.org/10.1145/1508244.1508258
Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1673
Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1673
Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2407
Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2407
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0392
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0392
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0252
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0252
Http://valgrind.org/
http://doi.acm.org/10.1145/168619.168635

324 D. Wu et al.

77. Wei, J., Payne, B.D., Giffin, J., Pu, C.: Soft-timer driven transient kernel control flow attacks
and defense. In: ACSAC ’08: Proceedings of the 2008 Annual Computer Security Applications
Conference, pp. 97–107. IEEE Computer Society, Washington, DC, USA (2008). DOI
http://dx.doi.org/10.1109/ACSAC.2008.40

78. Xiong, X., Tian, D., Liu, P.: Practical protection of kernel integrity for commodity OS
from untrusted extensions. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS ’11. The Internet Society (2011)

79. Xu, J., Kalbarczyk, Z., Patel, S., Iyer, R.: Architecture support for defending against buffer
overflow attacks. In: Workshop Evaluating & Architecting Sys. Depend. (2002)

80. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazieres, D.: Making information flow explicit
in HiStar. Communications of the ACM (2011)

81. Zeldovich, N., Kannan, H., Dalton, M., Kozyrakis, C.: Hardware enforcement of application
security policies using tagged memory. In: Proceedings of the 8th USENIX conference on
Operating systems design and implementation, OSDI’08, pp. 225–240. USENIX Association,
Berkeley, CA, USA (2008). URL http://dl.acm.org/citation.cfm?id=1855741.1855757

82. Zeng, Q., Wu, D., Liu, P.: Cruiser: Concurrent heap buffer overflow monitoring using lock-
free data structures. In: Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’11, pp. 367–377. ACM, New York, NY, USA
(2011). DOI http://doi.acm.org/10.1145/1993498.1993541. URL http://doi.acm.org/10.1145/
1993498.1993541

http://dl.acm.org/citation.cfm?id=1855741.1855757
http://doi.acm.org/10.1145/1993498.1993541
http://doi.acm.org/10.1145/1993498.1993541

Controllability and Observability of Risk
and Resilience in Cyber-Physical Cloud Systems

Hasan Cam

Abstract Effective management of risk and resilience in a dynamic cyber-physical
system is essential for ensuring successful completion of missions by minimiz-
ing the adverse impact of attacks and physical failures. With the accurate risk
assessment and efficient resilience control of security events and operations, a cyber-
physical system can keep performing satisfactorily by adapting to the dynamic
changes occurring due to various cybersecurity events and operations, such as
exploiting vulnerabilities, detecting intrusions, and recovering compromised nodes.
To the best of our knowledge, this book chapter is the first one to present a model
with system state equations of linear and non-linear, based on cybersecurity param-
eters such as cyber assets’ vulnerabilities, criticalities, dependencies, influences,
attack types, intrusions, recovery rate, patching rate, normal and compromised
nodes. Using this model, this book chapter describes how to apply the controllability
and observability aspects of linear/non-linear systems to manage cybersecurity risk
and resilience of cyber-physical systems. The purpose of employing controllability
is to steer a system from an abnormal security state to a normal security state.
That is, by implementing recovery and resilience operations on compromised nodes
and assets of a system, it is steered from an abnormal state with compromised
nodes towards a state with a fewer or no compromised nodes. Observability is
used to determine the system security state by having appropriate cyber output
measurements. The challenges for implementing controllability and observability
are discussed. An example is provided to illustrate how controllability could be
used to achieve resilience within a network.

H. Cam (�)
Network Science Division, U.S. Army Research Laboratory, Adelphi, MD 20783, USA
e-mail: hasan.cam.civ@mail.mil

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__15,
© Springer Science+Business Media New York 2014

325

mailto:hasan.cam.civ@mail.mil

326 H. Cam

1 Introduction

As the emerging technologies such as cloud services and mobile computing are
increasingly integrated with the current distributed control systems, their control
and security become more challenging because they involve the uncertainties and
disturbances of not only physical world but also cyber space. Control systems
and critical infrastructures may include all those physical systems that make vital
contributions to national security, economic stability, public health, or safety. Given
that cloud service providers support millions of customers, cloud systems and
infrastructure can be considered as a critical infrastructure to the extent that the
failure of an important cloud computing system may have great national impact.
Therefore, the cloud computing systems should be designed and managed together
with the cyber systems so that their security and resilience can be taken into
account at every layer of design and management [1]. To this end, this book chapter
addresses how cybersecurity events and operations of cyber-physical systems can be
modeled, and then applies the controllability and observability concepts of control
theory to manage cybersecurity risk and resilience of cyber-physical systems.

Cloud computing is becoming one of the most explosively expanding technolo-
gies in the computing industry. It is obvious that cloud computing fundamentally
changes the way that computing and information technology services are delivered
to customers and organizations. It enables users to migrate their data and com-
putation to a remote location with minimal impact on their system performance.
Cloud computing benefits include flexibility, reduced cost, improved automation,
and sustainability. But, when failures occur in cloud computing systems due to
various reasons such as cyber attacks or physical disturbances, they could result
in grave damages to economy, security, or social life. Therefore, this book chapter
addresses how impact of such failures and damages can be minimized by applying
controllability and observability techniques of control theory to the management of
cybersecurity risk and resilience in cyber-physical systems.

As the complexity of existing physical systems and the sophistication of threats
increase, the current hardware/software cyber and computing systems continue
to suffer from zero-day threats and vulnerabilities. Because having full defense
against the penetration of these advanced persistent threats is not realistic, we must
ensure how physical and cyber systems can keep functioning effectively despite
the presence of cyber attacks. Adaptive and cost-effective techniques should be
developed to enable the continuity of mission-critical operations in the presence
of advanced attacks. This requires risk and resilience management to accomplish
mission assurance [2, 3]. In general, risk refers to the probability that an adverse
event or action occurs and results in a negative impact or consequence. In the context
of cyber security, risk is defined as being the expected likelihood and consequences
of threats or attacks on cyber assets. Risk assessment involves identifying threats
and vulnerabilities, computing the occurrence likelihood of threats, and then
determining the impact and consequences of exploiting vulnerabilities by threats.
Risk management is basically the process of first assessing risk and then taking

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 327

necessary actions to avoid, transfer, mitigate, or control it to an acceptable level
by considering the costs and benefits of the actions. We define the resiliency of a
system as being the ability of (i) resisting against any failures or cyber attacks, (ii)
keep functioning, possibly with a degraded performance, to complete mission in the
presence of some failures and attacks, and (iii) identifying and recovering the failed
entities of the system.

In control theory, a dynamic system is defined as being controllable if a set
of inputs can drive it from an initial state to any desired final state within a
finite time, and observable if its complete internal state can be constructed from
its outputs [4–8]. Controllability and observability are considered in the design
of autonomic computing systems for web services [9], and self-adaptive systems
[10]. Currently, there is no real-time modeling and management of cybersecurity
events and operations in linear/non-linear time-invariant systems, with the purpose
of applying the controllability and observability of control-theory to manage risk
and resilience. To the best of our knowledge, this book chapter is the first one to
present a cybersecurity model for controllability and observability of linear/non-
linear systems for cybersecurity events and operations. The model is constructed by
developing differential equations to capture cyber assets vulnerabilities, recovery,
attacks, etc., so that controllability and observability of control theory can be
applied to the development of risk and resilience in cyber-physical systems. A
preliminary version of this model is presented in [11]. We also describe how
the differential equations of a model for nonlinear systems can be linearized.
Risk and resilience management of a cyber-physical system is discussed using
the cybersecurity parameters such as cyber assets’ vulnerabilities, criticalities,
dependencies, influences, attack types, intrusion, recovery rate, patching rate, and
compromised nodes. The controllability and observability aspects of linear/non-
linear systems are discussed to significantly enhance real-time risk and resilience
management of cyber-physical systems.

The rest of this book chapter is organized as follows. Section 2 presents the
problem statement, along with controllability and observability concepts of control
theory. Section 3 lays out the proposed cybersecurity model for linear and non-
linear cyber-physical systems. Section 4 presents an approach and an example to
deploying controllable input signals at critical network nodes. Section 5 concludes
the chapter with final remarks.

2 Controllability, Observability, and Problem Statement

Control theory offers a powerful mechanism to deal with disturbances, unpre-
dictable changes, and uncertainties in modeling, analyzing, and designing resource
control and feedback systems. Controller aims to maintain the difference between
the reference input (e.g., performance targets as desired values) and the measured
output (e.g., measured performance metrics), in spite of disturbance, noise, or attack
that are not under control (Fig. 1).

328 H. Cam

Fig. 1 Block diagram of a control system

Most real systems are non-linear, and their controllability is similar to that of
linear systems in many aspects [7]. A cyber-physical dynamical system can be
modeled as a linear time-invariant dynamic system using a combination of N system
state equations and K output equations as follows.

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)

where

– The vector x(t)= (x1(t), . . . , xN(t))T corresponds to the N system state variables
that capture the state of a network with N nodes at time t,

– The N×N matrix A describes the network’s connectivity and interaction strength
between nodes,

– The N ×M input matrix B identifies the nodes that are controlled by an outside
controller, where (M <=N),

– The system is controlled by a time-dependent input vector u(t)= (u1(t), . . . ,
uM(t))T that is imposed by the controller,

– The vector y(t)= (y1(t), . . . , yK(t))T denotes the K system outputs corresponding
to K system state variables of interest, where (K <=N),

– The K×N matrix C describes the coefficients that weight the state variables, and
– The K×M matrix D describes the coefficients that weight the system inputs.

When an attacker’s input ua, process noise wp, and measurement noise wm are
added to a linear time-invariant dynamic system, the system can be described as

dx(t)/dt = Ax(t)+Bu(t)+ ua(t)+wp(t)

y(t) =Cx(t)+Du(t)+wm(t)

Controllability is related to the ability of forcing the system into a particular state
by using an appropriate control signal. If the N×NM controllability matrix [B, AB,
A2B, . . . , AN− 1B] has full rank N, then the system is controllable, according to
Kallman’s controllability rank condition. A system is called controllable if it can be
driven from any initial state to any desired final state in finite time using a suitable
choice of input. This is like capturing an ability to guide a system’s behavior towards
a desired state via proper manipulation of input variables.

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 329

Observability is related to the possibility of observing states of a system via output
measurements. The state equation is observable if for any input state x0 and for any
input signal u, finite the output y sequence determines uniquely x0. The pair (A,C)
or the system is observable if the observability matrix has full rank N: [C, CA,
. . . , CAN− 1]T . A system is called observable if its complete internal state can be
reconstructed from its outputs.

Problem Statement A cyber-physical system such as a cloud computing system
features a tight coupling and coordination of computing, communication, sensing,
and physical elements that interact with physical inputs and outputs. Managing risk
and resilience in real-time is essential to achieve mission assurance. However, it
is a very challenging issue, due to the lack of modeling, incomplete information
on vulnerabilities and threats, and dynamic network environment with uncertainties
and unexplained activities in traffic.

Given incomplete information on vulnerabilities, threats, attacks, fully/partially
compromised nodes, topology, and uncertainties over a cyber-physical system,
the objective is to assess and manage dynamically the risk and resilience of
the system, and then steer a system with compromised nodes towards a system
without compromised nodes by implementing recovery and resilience operations
on compromised nodes and assets, and strengthening resilience of the system. To
achieve this, this chapter discusses first how to model the assets and cybersecurity
operations of a cyber-physical system as a linear/non-linear time-invariant dynamic
system, and then use controllability and observability techniques of control theory
in order to determine: (i) a set of independent input signals and nodes that are
needed to drive the system from an abnormal state with compromised elements
towards a normal state with a fewer or no compromised elements, and (ii) a set of
output measurements and sensors that are needed to observe and characterize the
system state.

In this regard, controllability-related main problems are: (i) how to characterize
and predict driver nodes, and (ii) how to identify the minimum number of driver
nodes to achieve controllability. Similarly, observability-related main problems are:
(i) how to identify minimum set of sensors whose measurements can allow us to
determine all state variables, and (ii) how to determine the impact of noise and
measurement uncertainties on determining the minimum number of sensors.

3 Cybersecurity Modeling of a Cyber-Physical System

A cyber-physical control system comprises various types of assets such as sensors,
intrusion detection systems, scanners, controllers, and actuators. The minimal
requirement for the risk assessment of any system is to characterize threats, vulner-
abilities, effectiveness and operational status of the system’s defenses for particular
threats. In addition, determining the capabilities of an attacker or adversary helps
determine the occurrence likelihood of an attack, leading to a better risk assessment
and management. But, due to the lack of information on determining adversarial

330 H. Cam

behaviors, probability of attack occurrence, and potential negative impact, risk
assessment and management should be based on a model where all uncertainties,
constraints, and assumptions are expressed clearly. This model should also represent
accurately defense characteristics, threats, the overall system, and their timing
relationships, based on the known characteristics and/or accurate measurements of
threats, control defense characteristics, and systems.

A more realistic model contributes to performing a more accurate risk manage-
ment, leading to more meaningful security metrics. The model provides insight
into quantifying and improving security status of systems for various threats with
different defense systems. In addition, incorporating timing relationships into a
model of risk and resilience management is highly desirable, as systems increasingly
become more dynamic.

To model a cyber-physical system using the linear/non-linear time-invariant
systems, we consider a network or system of N nodes, where

• N(t)=G(t)+V(t)+E(t)+C(t)+E(t)+F(t), and N(t) is the total number of
nodes in the system at time t,

• G(t) denote the number of those nodes that do not have any known vulnerability
at time t,

• V(t) denote the number of those nodes that have some known vulnerabilities at
time t, but are not exploited yet,

• C(t) denote the number of those nodes that are compromised partially/fully
through the exploitation of their vulnerabilities,

• E(t) denote the number of those nodes that are evicted due to that they cannot be
recovered,

• F(t) denote the number of those nodes that have failed and do not operate due to
physical failures.

3.1 Modeling a Linear Cybersecurity System

The cybersecurity environment of a cyber-physical system can be modeled as a
linear system. Our cybersecurity model with linear system equations for such a
system is illustrated in Fig. 2.

Fig. 2 The cybersecurity
model of a linear system

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 331

Let:

R(t): recovery support services rate,
P(t): patching support services rate,
o(t0): vulnerability occurrence rate,
p(t0): vulnerability patching rate,
e(t0): vulnerability exploitability rate,
r(t0): compromised systems recovery rate,
d(t0): cyber compromised-node eviction rate, and
f (t0): physical failure rate.

Let P(t) and R(t) denote the inputs, based on recovery and patching support
operations, respectively. Also, let C(t) and V(t) denote the outputs that can be
measured. Then, the system can be described as follows:

ẋ(t) =
(
Ġ
(

t
)
,V̇

(
t
)
,Ċ

(
t
)
, Ė

(
t
)
, Ḟ

(
t))

u(t) = (P(t), R(t))
y(t) = (C(t), V (t))

Differential equations of the model shown in Fig. 2 can be written as

Ġ(t) = pV (t)− oG(t)− f G(t)
V̇ (t) = oG(t)+ rC(t)− pV(t)− eV(t)− fV (t)+P(t)
Ċ(t) = eV (t)− rC(t)− dE(t)− fC(t)+R(t)
Ė(t) = dC(t)
Ḟ(t) = f G(t)+ fV (t)+ fC(t)

Assuming that system state variables G(t), V(t), C(t), E(t), and F(t) are linear,
the system state can be expressed using the first-order linear differential equations
as follows.

ẋ(t) = Ax(t)+Bu(t)
⎡

⎢⎢⎢⎢⎢⎣

Ġ(t)
V̇ (t)
Ċ(t)
Ė(t)
Ḟ(t)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

− f − o p 0 0 0
o −e− f − p r 0 0
0 e −r− f −d 0
0 0 d 0 0
f f f 0 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

G(t)
V (t)
C(t)
E(t)
F(t)

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎦

[
P(t)
R(t)

]

[
C(t)
V (t)

]
=

[
0 0 1 0 0
0 1 0 0 0

]

⎡

⎢⎢⎢⎢⎢⎣

G(t)
V (t)
C(t)
E(t)
F(t)

⎤

⎥⎥⎥⎥⎥⎦

332 H. Cam

3.2 Modeling a Nonlinear Cybersecurity System

The cybersecurity environment of a cyber-physical system can also be modeled as
a nonlinear system. Our cybersecurity model with nonlinear system equations for
such a system is illustrated in Fig. 3. Obviously, the dynamics of the system can be
described in various ways.

Fig. 3 The cybersecurity
model of a non-linear system

Differential equations of the model shown in Fig. 3 can be written as

Ġ(t) = pV (t)− oG(t)C(t)/N(t)− f G(t) (1)

V̇ (t) = oG(t)+ rC(t)G(t)/N(t)− pV(t)− eV(t)− fV (t)+P(t) (2)

Ċ(t) = eV (t)− rC(t)G(t)/N(t)− dE(t)− fC(t)+R(t) (3)

Ė(t) = d C(t) (4)

Ḟ(t) = f G(t)+ f V (t)+ f C(t) (5)

The Eqs. 1, 2, and 3 are nonlinear (due to the presence of the product term
G(t)C(t)). In order to approximate a nonlinear system by a linear one around an
equilibrium point of time t0, we employ Jacobian linearization as follows. Note
that nonlinear perturbations around the equilibrium point of time t0 are ignored,
compared to the (lower order) linear terms.

f(G(t),V (t),C(t),E(t),F(t))≈ f(G(t0) ,V (t0) ,C (t0) ,E (t0) ,F (t0))+

[
fG(t) (t0) fV(t) (t0) fC(t) (t0) fE(t) (t0) fF(t) (t0)

]

⎡

⎢⎢⎢⎢⎢⎣

G(t)−G(t0)
V (t)−V (t0)
C(t)−C (t0)
E(t)−E (t0)
F(t)−F (t0)

⎤

⎥⎥⎥⎥⎥⎦

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 333

where, for x(t)∈{G(t), V(t), C(t), E(t), F(t)},

fx(t) (t0) =
∂ f (G(t),V (t),C(t),E(t),F(t))

∂x(t)
at t = t0.

Now, let’s linearize the non-linear equation 1 using the above Jacobian technique.

Ġ(t) = pV (t)− oG(t)C(t)/N(t)− f G(t)

= pV (t0)− oG(t0)C (t0)/N (t0)− f G(t0)+

[− f − oC (t0)/N (t0) p oG(t0)/N (t0) 0 0
]

⎡

⎢⎢⎢⎢⎢⎣

G(t)−G(t0)
V (t)−V (t0)
C(t)−C (t0)
E(t)−E (t0)
F(t)−F (t0)

⎤

⎥⎥⎥⎥⎥⎦

= (− f − oC (t0)/N (t0))G(t)+ pV(t)+ (oG(t0)/N (t0))

C(t)− oG(t0)C (t0)/N (t0)

Let a11 =−f − oC(t0)/N(t0), a12 = p, a13 = o G(t0)/N(t0), a14 = 0, a15 = 0, and
u1 =−o G(t0)C(t0)/N(t0).

Similarly the non-linear equation 2 can be linearized as follows.

V̇ (t) = oG(t)+ rC(t)G(t)/N(t)− pV(t)− eV(t)− fV (t)+P(t)

= oG(t0)+ rC (t0)G(t0)/N (t0)− pV (t0)− eV (t0)− fV (t0)+P(t0)+

[o+ rC (t0)/N (t0)− p− e− f rG(t0)/N (t0)00]

⎡

⎢⎢⎢⎢⎢⎣

G(t)−G(t0)
V (t)−V (t0)
C(t)−C (t0)
E(t)−E (t0)
F(t)−F (t0)

⎤

⎥⎥⎥⎥⎥⎦

= (o+ rC (t0)/N (t0))G(t)+ (−p− e− f)V (t)+ (rG(t0)/N (t0))

C(t)+P(t0)− rG(t0)C (t0)/N (t0)

Let a21 = o+ rC(t0)/N(t0), a22 =−p− e− f, a23 = r G(t0)/N(t0), a24 = 0,
a25 = 0, and u2 =P(t0)− rG(t0)C(t0)/N(t0).

334 H. Cam

The non-linear equation 3 can be linearized as follows.

Ċ(t) = eV (t)− rC(t)G(t)/N(t)− dE(t)− fC(t)+R(t)

= eV (t0)− rC (t0)G(t0)/N (t0)− dE (t0)− fC (t0)+R(t0)+

[−rC (t0)/N (t0) e − f − rG(t0)/N (t0) −d 0
]

⎡

⎢⎢⎢⎢⎢⎣

G(t)−G(t0)
V (t)−V (t0)
C(t)−C (t0)
E(t)−E (t0)
F(t)−F (t0)

⎤

⎥⎥⎥⎥⎥⎦

= (−rC (t0)/N (t0))G(t)+ eV(t)+ (− f − rG(t0
)
/N (t0)

)

C(t)− d E(t)+ rG(t0)C (t0)/N (t0)+R(t0)

Let a31 =−rC(t0)/N(t0), a32 = e, a33 =−f − rG(t0)/N(t0), a34 =−d, a35 = 0,
and u3 = rG(t0)C(t0)/N(t0)+R(t0).

Finally, all the linearized system state equations of the nonlinear system can be
expressed as

⎡

⎢⎢⎢⎢⎢⎣

Ġ(t)
V̇ (t)
Ċ(t)
Ė(t)
Ḟ(t)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 0
a21 a22 a23 0 0
a31 a32 a33 a34 0

0 0 d 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

G(t)
V (t)
C(t)
E(t)
F(t)

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎣
u1

u2

u3

⎤

⎦

[
C(t)
V (t)

]
=

[
0 0 1 0 0
0 1 0 0 0

]

⎡

⎢⎢⎢⎢⎢⎣

G(t)
V (t)
C(t)
E(t)
F(t)

⎤

⎥⎥⎥⎥⎥⎦

where

a11 =−f − oC(t0)/N(t0), a12 = p, a13 = o G(t0)/N(t0), u1 =−o G(t0)C(t0)/N(t0);
a21 = o+ rC(t0)/N(t0), a22 =−p− e− f, a23 = r G(t0)/N(t0), a24 = 0, a25 = 0,

u2 =P(t0)− rG(t0)C(t0)/N(t0);
a31 =−rC(t0)/N, a32 = e, a33 =−f − rG(t0)/N, a34 =−d, a35 = 0, and).

u3 = rG(t0)C (t0)/N +R(t0

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 335

3.3 Shaping Functions of Inputs and System State Variables
in Model for Controllability and Observability

Once system state and output equations of model are derived, the controllability
and observability of the system can be determined by checking whether the
controllability matrix [B, AB, A2B, . . . , AN− 1B] and the observability matrix [C,
CA, . . . , CAN− 1]T have full rank N.

If any one of the controllability and observability matrices does not have the
rank N, then their entries may be modified properly by re-shaping the functions of
inputs and system state variables, along with selecting a different set of assets for
measuring outputs or applying inputs, in accordance with meeting a given objective
of the system. For instance, in order to provide risk and/or resilience, the functions of
system state variables G(t), V(t), C(t), E(t), and F(t) are shaped based on available
risk and resilience mechanisms and services of the system. More control defense
systems and resilience mechanisms could be added to a set of selected (critical)
nodes that are controlled by independent input signals.

4 Deployment of Controllable Input Signals at Critical
Network Nodes

This section describes a protocol, called Protocol for security Control, Resilience,
and Controllability Collaboration (CRCC), and discusses its steps in depth. The
main objective of this protocol is to identify critical nodes from the perspective of
risk and resilience, and then feed the selected critical nodes with independent input
signals to assist controllability of risk and resilience management of the system.
Because critical nodes are identified in terms of risk and resilience, the protocol first
computes the risk and resilience of nodes individually and collectively, and then
ranks the nodes based on their attributes such as risk, resilience, and influence.

Protocol CRCC
Input: Conditional probability tables of cyber assets for Bayesian network, inventory

of security control and resilience mechanisms at each asset or node, topology
information and control effectiveness of network.

Output: Identifying critical assets, and feeding them with independent input signals
for assisting controllability.

1. Compute risk, control effectiveness and resilience of cyber assets using a
Bayesian network.

2. Identify and prioritize the critical nodes of network with respect to network
connectivity and the attributes of resilience, control, and influence by introducing
an enhanced Hierarchically Well-Separated Tree.

3. Feed selected critical nodes with independent input signals for assisting system
controllability.

336 H. Cam

4.1 Risk, Control, and Resilience Scores of Nodes
Using Bayesian Network

Risk assessment involves identifying threats and vulnerabilities, computing the
occurrence likelihood of threats, and then determining the impact and consequences
of exploiting vulnerabilities by threats. Risk management is the process of first
assessing risk and then taking necessary actions to avoid, transfer, mitigate, or
control it to an acceptable level by considering the costs and benefits of the actions.
The minimal requirement for the risk assessment of any system is to characterize
threats, vulnerabilities, effectiveness and operational status of the system’s defenses
for particular threats. In addition, determining the capabilities of an adversary helps
determine the likelihood of an attack, leading to a better risk assessment.

Risk assessment needs the scoring of vulnerabilities. In this regard, the Security
Content Automation Program (SCAP), developed by the National Institute of
Standards and Technology (NIST), supports the National Vulnerability Database
(NVD) providing a repository for known vulnerabilities and software that contains
these vulnerabilities. As part of SCAP, the Common Vulnerability Scoring System
(CVSS) provides a score for each new software vulnerability discovered that
prioritizes the importance of the vulnerability. Once vulnerabilities and exploits are
scored, Bayesian network is one commonly used technique to perform risk assess-
ment. Bayesian networks (or Belief networks) are graphical models representing
the probabilistic relationships among a set of variables under uncertainty. In the
Bayesian network, the graph nodes represent random variables, and edges show
dependencies among nodes.

Bayesian networks are usually used for risk assessment by representing threats,
vulnerabilities, and their dependencies. However, this section extends Bayesian
network to integrate risk assessment with determining the effectiveness of control
defense systems and resilience mechanisms of an individual host machine. That is,
additional random variables are added to the Bayesian network of risk assessment
to represent control effectiveness, resilience, and recovery.

This leads to the integration of risk assessment with the measurements of
effectiveness of control, resilience, and recovery attributes of cyber assets, as
illustrated in Fig. 4.

P(A), P(B): probability that node receives various threats.
P(C), P(D): probability that node has vulnerabilities that can be exploited by threats.
P(E): probability that node receives aggregated threat.
P(F): probability that node has aggregated vulnerabilities that can be exploited by

threats.
P(G): probability that vulnerability can be exploited at node.
P(H): probability that node is infected despite the presence of control mechanisms.
P(I): probability that node has proper internal/external recovery mechanisms for

mitigating node’s infection.
P(J): probability that node infection is mitigated.

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 337

Fig. 4 An example of a Bayesian network for the analysis of risk, control, and resilience of an
individual node (e.g., host) in a network The random variables are A, B, C, D, E, F, G, H, I, and J.
The expressions of events corresponding to these random variables are enclosed within quotation
marks

In Bayesian network, vertices represent the (binary) variables of system and the
dependence relations among these variables are expressed in terms of conditional
probabilities in conditional probability tables (CPTs). Bayesian reasoning uses
Bayes’ theorem of P(X|Y)=P(Y|X)P(X)/P(Y), where P(X|Y) and P(Y|X) are
conditional probabilities of random variables X and Y that represents two events.
Note that P(X,Y)=P(X|Y)P(Y), and P(X,Y)=P(Y|X)P(X), where P(X,Y) be the
probability that both events corresponding to variables X and Y have occurred.
When this product rule is generalized by extending it to n variables, it is called
the chain rule:

P(X1,X2, . . . ,Xn) = P(X1)P
(

X2

∣∣∣X1

)
P
(

X3

∣∣∣X1,X2

)
. . .P

(
Xn

∣∣∣X1,X2, . . . ,Xn−1

)

= P(X1)∏n
i=2P

(
Xi

∣∣∣X1, . . . ,Xi−1

)

The (posterior) joint probability distribution as well as the intrusion risk, control
effectiveness, and resilience effectiveness are computed as follows.

P(A,B,C,D,E,F,G,H, I,J) = P(A)P(B)P(C)P(D)P
(

E
∣∣∣A,B

)
P
(

F
∣∣∣C,D

)

P
(

G
∣∣∣E,F

)
P
(

H
∣∣∣G

)
P(I)P

(
J
∣∣∣H, I

)

Intrusion Risk : P(G = True) = ∑A,B,C,D,E,F∈{T,F}P(G = True,A,B,C,D,E,F) .

Control Effectiveness : P(H = False)

= ∑A,B,C,D,E,F,G∈{T,F}P(H = False,A,B,C,D,E,F,G) .

Resilience Effectiveness : P(J = True)

= ∑A,B,C,D,E,F,G,H,I∈{T,F}P(J = True,A,B,C,D,E,F,G,H, I) .

338 H. Cam

4.2 Identifying and Prioritizing Critical Nodes

To achieve resource matching and management along with information distribution,
Hierarchical Well-Separated Trees (HSTs) are considered to be a very useful tool
[12], although they are originally developed to approximate arbitrary metrics using
trees [13]. For a given network G, a corresponding HST is constructed as an overlay
network over G such that the nodes of the HST are the nodes of G, but the edges
of HST are virtual and can map to some paths of different lengths in G, so that
HST approximates G by a logarithmic distortion factor. Specifically, an α-HST is
defined as a rooted weighted tree such that (i) the edge weights from the root to
leaf decrease by a factor of α, (ii) all root-to-leaf paths have the same hop distance,
and (iii) the weights from each node to its children are the same. To identify critical
nodes of a network based on the values of their attributes such as resilience, control,
and influence, this section employs our Hierarchically well-Separated Tree with
Attributes (HSTA) [3] that is an extended version of HST.

HST assumes a random permutation of ranks for nodes, which probably does not
matter for the problems like finding an empty slot in a garage for an incoming car.
However, in cybersecurity domain, not only that the values of every node’s attributes
could vary, but also the criticality of attributes may change in space and time.
Therefore, HSTA of this section considers one or more attributes during nomination
process. These multiple attributes of nodes are ordered like primary, secondary,
and tertiary attribute. During the ancestor nomination process, the primary attribute
values of nodes are considered first for comparison and nomination. If the primary
attribute values of two nodes happen to be very close to each other according to its
threshold, then the next high-ranking attribute (i.e., secondary attribute) values of
these two nodes are compared to break the tie. This tie-breaking process is applied
until the tie is broken.

For each attribute k, we introduce a “closeness” threshold Tk in the sense that,
if the difference between two adjacent values of an attribute is equal of smaller
than the attribute’s threshold, then these two values are assumed to be the same.
During the ancestor nomination process of nodes, if such two values of an attribute
happen to the numbers to be compared, then they are considered the same. To break
the tie in such a case, the values of the next attribute in ranking are considered for
ancestor nomination. But, if the tie cannot be broken by the lowest rank attribute
either, then one of these two nodes is chosen randomly. Let Tr, Tc, and Ti denote the
closeness thresholds of the resilience, control, and influence attributes, respectively.
In this section, the attributes of resilience, control, and influence are ordered from
highest to lowest, so that the primary attribute is the resilience attribute.

Next, this section proposes Algorithm Critical Nodes (CN) and an example to
show how α-HSTA can be implemented for α= 2 and a few attributes. Algorithm
CN constructs a 2-HSTA from its leaves level towards the root level, by assuming
that all the nodes of a given network initially form the leaves level of the tree. If we
denote the leaves level by level 1, then the 2-HSTA starts determining the level 1
ancestors, and keeps building the tree towards the root node.

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 339

Algorithm CN
Input: A network of N nodes, each having three attribute values, namely, resilience,

control, and influence ranked from highest to lowest. Let α=2, β =1, and p = 0,
. . . , �log2N�. . Let Tr, Tc, and Ti denote the closeness thresholds of the resilience,
control, and influence attributes, respectively.

Output: The most critical nodes of the network are identified with respect to three
attributes and network hop distances.

Begin

/* Comment: Initially, no node has any ancestor. */

Let p be either �log2N� or a desirable number

smaller than �log2N� that is good enough to nominate

desirable number of high-level ancestor nodes;

Let the given network of N nodes be represented by a

graph with the same connectivity of network links;

for i=0 to p

1. Each candidate node floods up to 2pβ hops

distance to determine all its potential ancestor

nodes;

2. Each candidate node compares its primary

attribute (i.e., resilience) values with the

primary attribute

values of all those potential ancestor nodes that

are located at 2pβ hops distance;

a. If the difference of the primary

attribute values of any two nodes is greater

than Tr, then consider these attribute

values in Step 3 and go to Step 3;otherwise,

compare the secondary attribute values of

these two nodes to break the tie. If the

difference oftheir secondary attribute

values is greater than Tc, then consider

these attribute values in Step 3 and go to

Step 3; otherwise, compare the tertiary

attribute values of these two nodes to break

the tie; if the tie is not broken, choose

one of these nodes. If the difference of

their tertiary attribute values is greater

than Ti, then consider these attribute

values in Step 3 and go to Step 3.

b. Each candidate node nominates the node that

has the highest attribute value as its

340 H. Cam

pth-round ancestor node among its all

potential ancestor nodes and itself;

(Note: a node may nominate itself as an

ancestor node);

3. At the end of the round, only nominated

ancestor nodes are considered in the next round;

end for

end

Example 1 Algorithm CN constructs a 2-HSTA for the given 20-node network by
assuming that all the nodes of the network initially form the leaves level of the 2-
HSTA. Let Tr = 0.05, Tc = 0.1 and Ti = 0.08. Only the resilience attribute values
that range from 0.1 to 1.0 are shown with subscript R in Fig. 5, where 1.0 is the
highest desirable attribute value. In the first iteration (i.e., p= 0) of the for loop
in Algorithm CN, each candidate node floods 1 hop, compares resilience values,
and then choose the highest resilience value as its level 1 ancestors (node labels in
blue) if the difference of their resilience values is greater than Tr = 0.05; otherwise,
consider their control values. For instance, note that the difference of the resilience
values of N10 is N11 is less than Tr = 0.05, as illustrated in Fig. 5. Therefore, their
control attribute values (i.e., 0.60 and 0.45) need to be compared, which causes N11

to nominate itself rather than N10. At the end of iteration 1, the nominated ancestor
nodes of level 1 are N2, N5, N6, N9, N11, N15, N16, N17, and N20. In the second
iteration (i.e., p= 1) and third iteration (i.e., p= 2) of the for loop in Algorithm CN,
each candidate node floods up to 2 hops and 4 hops, respectively, as shown in Fig. 6.
At the end of the second iteration, the nominated ancestor nodes of level 2 are N6,
N9, and N16, while only N6 is nominated as an ancestor node at level 3.

Fig. 5 (a) The 20-node network, where only the resiliency attribute values range from 0.1 to 1.0
are shown, where 1.0 is the highest desirable attribute value. (b) Flooding 1-hop and nominating
the level 1 ancestors at the first round of 2-HSTA. The nominated ancestor nodes of level 1 are N2,
N5, N6, N9, N11, N15, N16, N17, and N20 that are pointed to by arrowheads in blue

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 341

Fig. 6 (a) Flooding 2-hops and nominating the level 2 ancestors at the second round of 2-HSTA.
The nominated ancestor nodes of level 2 are N6, N9, and N16 that are pointed to by arrowheads
in red. (b) Flooding 4-hops and nominating the level 3 ancestors at the third round of 2-HSTA.
The nominated ancestor node at level 3 is N6 that is pointed to by arrowheads in green, indicating
that N6 is identified as the most critical node. Hence, HSTA integrates the network connectivity
information with the information of attributes in identifying critical nodes of a network at every
round

4.3 Feeding Critical Nodes with Independent Input Signals
for Assisting Controllability

Once the critical resilience nodes are chosen using the 2-HSTA in the previous
section, we examine their resilience mechanisms and services, in addition to their
system capabilities and resources such as computing power, storage space, recovery
and monitoring mechanism, mobile agents, etc. Their capability of supporting the
resilience operations can be strengthened by adding more resilience and control
effectiveness mechanisms. Finally, those nodes whose capability of supporting
resilience operations can be represented by external independent signals are selected
and fed by independent inputs. These selected nodes can be considered as driver
nodes [7], and controllability is posed as identifying the minimum number of driver
nodes such that rank(C)=N. Recall that, if the rank of the N×NM controllability
matrix C = (B, AB, A2B, . . . , AN− 1B) equals N, then the network/system is said to
be controllable, according to Kallman’s controllability rank condition.

Example 2 Let’s assume that the resiliency critical nodes of level 2 (i.e., N6,
N9, N16) in the example of 2-HSTA have external inputs controlled by an outside
controller. These critical nodes N6, N9, N16 are also called the driver nodes from
the network controllability perspective. In our interpretation, this implies that these
driver nodes become responsible for restoring network nodes to normal operation
whenever they are compromised partially and fully. The external inputs u6(t), u9(t),
and u16(t) of these nodes are non-zero, and all the other external inputs of nodes
are zero. This implies that the entries b6, b9, and b16 of the 20× 3 matrix B

342 H. Cam

Fig. 7 The nominated
ancestor nodes of level 2 in
the 2-HSTA, namely, N6, N9,
and N16, are selected as the
driver nodes for network
controllability in resilience
operations, based on their
resilience asset values. That
is, these nodes become
responsible for restoring
network nodes to their normal
operation whenever they get
compromised. Matrix BT is
the transpose of matrix B

are non-zero. As for the entries aij of the 20× 20 matrix A, they depend on the
network connectivity links. Figure 7 shows the weights of resiliency dependencies
or influences aij and aji between neighboring nodes i and j, for all nodes, where aij

is the weight associated with the directed edge from j to i in the graph. The same
type of weights could be computed for other types of attributes such as control, and
vulnerability. Note that the N×NM controllability matrix: C = (B, AB, A2B, . . . ,
AN− 1B), and the system is controllable if rank(C)=N, where N = 20 and M = 3.

A =

⎡

⎢⎣
a11 · · · a1,20

...
. . .

...
a20,1 · · · a20,20

⎤

⎥⎦ , BT =

⎡

⎣
0 0 0 0 0 b6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b9 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b16 0 0 0 0

⎤

⎦
T

5 Conclusions

This book chapter presents a model with differential equations representing the
relationships among various events, operations, and security modes of assets,
vulnerabilities, impact of attacks, and control inputs. Using this model, this book
chapter has described how to apply the controllability and observability concepts
of linear/non-linear systems to enhance real-time risk and resilience management
of cyber-physical systems. The model has considered cybersecurity parameters
such as cyber assets’ vulnerabilities, criticalities, dependencies, influences, attack
types, intrusions, recovery rate, patching rate, normal and compromised nodes. The
purpose of employing controllability is to steer a system with some compromised
nodes towards a system without any compromised node by implementing recovery
and resilience operations on compromised nodes and assets, and strengthening

Controllability and Observability of Risk and Resilience in Cyber-Physical. . . 343

resilience of the system. Observability is used to determine the state of the
system by employing appropriate cyber output measurements. An approach to
determining critical nodes and feeding them with independent input signals for
assisting controllability is provided.

References

1. D. Catteddu et al., “Security and Resilience in Government Clouds,” ENISA, http://www.enisa.
europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment, Jan. 2011

2. N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using Bayesian
Attack Graphs,” IEEE Trans. on Dependable and Secure Computing, vol. 9, no. 1, Jan./Feb.
2012.

3. H. Cam, “PeerShield: Determining Control and Resilience Criticality of Collaborative Cyber
Assets in Networks,” Cyber Sensing 2012, SPIE Defense, Security, and Sensing, 23–27 April
2012, Baltimore, MD, USA.

4. R.E. Kalman, “Mathematical description of linear dynamical systems,”. J. Soc. Indus. Appl.
Math. Ser. A 1, 152–192 (1963).

5. D.G. Luenberger, Introduction to Dynamic Systems: Theory, Models, & Applications (Wiley,
1979).

6. J.-J. Slotine and W. Li. Applied Nonlinear Control (Prentice-Hall, 1991).
7. Y-Y. Liu, J-J. Slotine, A-L. Barabasi, “Controllability of Complex Systems,” Nature, vol. 473,

12 May 2011.
8. Y-Y. Liu, J-J. Slotine, A-L. Barabasi, “Observability of Complex Systems,” Proc. of the

National Academy of Sciences of the USA, Feb 12, 2013.
9. L. Checiu, B. Solomon, D. Ionescu, M. Litoiu, G. Iszlai, “Observability and controllability of

autonomic computing systems for composed web services,” Proc. of the 6th IEEE International
Symposium on Applied Computational Intelligence and Informatics, pp. 269–274, 2011.

10. Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Smit, “A design space for self-
adaptive systems,” R. Lemos et al. (Eds.), Self-Adaptive Systems, Lecture notes in computer
science (LNCS), Vol. 7475, Springer, Berlin Heidelberg (2013), pp. 33–50.

11. H. Cam, “ Risk and Resilience Controllability-Observability in Cloud Computing Security”,
ARO (Army Research Office) Cloud Security Workshop, March 11–12, 2013, George Mason
University.

12. J. Gao, L.J. Guibas, N. Milosavljevic, and D. Zhou, “Distributed Resource Management and
Matching in Sensor Networks,” Proc. of the 8th International Symposium on Information
Processing in Sensor Networks (IPSN’09), 97–108, April, 2009.

13. Subrata Chakraborty and Chung-Hsing Yeh, “A simulation based comparitive study of
normalization procedures in multiattribute decision making,” in 6th WSEAS Intl. Conference
on Artificial Intelligence, Knowledge Engineering and Databases, Corfu Island, Greece, 2007.

http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment

	Preface
	Acknowledgements
	Contents
	Cryptographic Key Management Issues and Challenges in Cloud Services
	1 Introduction
	2 Cryptographic Key Management Overview
	2.1 Key Types
	2.2 Key States
	2.3 Key Management Functions
	2.4 Key Management: Generic Security Requirements

	3 Cloud Computing Environment: Evolution and State of Practice
	3.1 Three Generations of Internet
	3.2 Cloud Computing Definition (by NIST)
	3.3 Cloud Computing Reference Architecture (from NIST)

	4 Cryptographic Key Management Challenges in the Cloud
	4.1 Challenges in Cryptographic Operations and Key Management for IaaS
	4.2 Challenges in Cryptographic Operations and Key Management for PaaS
	4.3 Challenges in Cryptographic Operations and Key Management for SaaS

	Appendix A: Security Analysis of Cryptographic Techniques for Authenticating VM Templates in the Cloud
	A.1 VM Template Authentication Using Digital Signature
	A.2 VM Template Authentication Using Cryptographic Hash Function
	A.3 VM Template Authentication Using Message Authentication Code (MAC)
	A.4 VM Template Authentication Based on Cloud Provider Discretionary Access Control
	A.5 Conclusion
	References

	Costs and Security in Clouds
	1 Introduction
	2 Cost Models
	2.1 Levels
	2.2 Factors

	3 Cost Primitives
	3.1 CPU Cycles
	3.2 Network Service
	3.3 Storage

	4 To or Not To
	4.1 Single-Client Model
	4.2 Multi-Client Model

	5 Cryptography
	6 Secure Outsourcing
	6.1 Trust
	6.2 Secure Outsourcing
	6.3 The Case for Basic Outsourcing
	6.4 Encrypted Data Storage with Integrity
	6.5 Searches on Encrypted Data
	6.6 Insights into Secure Query Processing

	7 Conclusions
	References

	Hardware-Enhanced Security for Cloud Computing
	1 Introduction
	1.1 Security Concerns
	1.2 Approaches to Securing Cloud Computing

	2 Hardware-Enhanced Security with HyperWall
	2.1 Threat Model
	2.2 Memory Protection
	2.3 Confidentiality and Integrity Protection Table
	2.4 Protecting Confidentiality and Integrity of VMs Under an Untrusted Hypervisor
	VM Initialization
	VM Runtime
	VM Terminate

	3 HyperWall Architecture Summary
	4 Trust Evidence
	5 Further Research Directions
	6 Summary and Further Readings
	References

	Cloud Computing Security: What Changes with Software-Defined Networking?
	1 Introduction
	2 Introduction to SDN: What Is Changing?
	3 Cloud Security with SDN: Opportunities and Vulnerabilities
	3.1 Network Management Complexity and Change in Personnel
	3.2 Autonomous Systems Versus Logically Centralized Management
	3.3 Restricted Management Access Versus Open Management Access
	3.4 Isolation Among Users/Tenants
	3.5 Response to Attacks
	3.6 Network Statistics Monitoring
	3.7 Data Confidentiality
	3.8 VM Migration
	3.9 Reliability
	3.10 Opportunities for Attackers

	4 SDN/OpenFlow Security Research
	5 Needed SDN Research and Development for Cloud Security
	6 Conclusions
	References

	Proof of Isolation for Cloud Storage
	1 Introduction
	2 Threat Model
	3 Cloud Storage and Storage Isolation Requirements
	4 Separation Verification
	4.1 Hard Disk I/O Contention
	4.2 Verification of Direct Attached Storage
	4.3 Verification of Network Based Cloud Storage
	4.4 Experiments
	Local Isolation Checking
	Remote Separation Checking

	5 Dedication Verification
	5.1 System Model
	Verification Requirements
	System Operations

	5.2 Basic Scheme
	5.3 Advanced Scheme
	Attested Region
	Probabilistic Verification
	Advanced Operations
	Reducing Metadata Storage

	5.4 Experiments

	6 Related Work
	7 Conclusion and Future Work
	References

	Selective and Fine-Grained Access to Data in the Cloud
	1 Introduction
	2 Security and Privacy in the Cloud
	3 Privacy of Data Storage
	3.1 Encryption and Fragmentation
	3.2 Indexes
	3.3 Selective Encryption

	4 Indexes and Fragmentation
	5 Indexes and Selective Encryption
	6 Conclusions
	References

	Enabling Collaborative Data Authorization Between Enterprise Clouds
	1 Introduction
	2 Cooperative Data Access Model
	2.1 Notations and Definitions
	2.2 Issues in Collaborative Data Access
	2.3 Related Work

	3 Enabling Cooperative Data Access
	3.1 Rule Consistency
	3.2 Rule Enforcement
	3.3 Query Planning

	4 Other Authorization Issues
	4.1 Rule Enforcement with Trusted Third Parties
	4.2 Handling Rule Changes

	5 Conclusions and Future Work
	References

	Making Query Execution Over Encrypted Data Practical
	1 Background: Clouds and Outsourcing
	1.1 Outsourcing Data Management: The Promise
	1.2 Outsourcing Data Management: The Problem

	2 Using Data Encryption
	2.1 Pre-transmission Dataset Encryption
	2.2 Data-at-Rest Encryption
	2.3 Homomorphic Encryption and Computing Over Ciphertexts
	2.4 Making Practical Tradeoffs
	2.5 The Database as a Service Architecture
	2.6 Current Status and Prototypes

	3 Overview of Remainder of Chapter
	4 Unexecutable Query Operations
	4.1 Reasons Operations Cannot Be Executed Over Ciphertext
	4.2 Post-processing
	4.3 Planning

	5 System Implementation
	6 Ciphertext Query Performance
	7 Conclusions
	References

	Privacy-Preserving Keyword Search Over Encrypted Data in Cloud Computing
	1 Introduction
	2 Overview of Search Over Encrypted Data
	2.1 Problem Formulation
	System Model
	Threat Model
	Search Privacy

	2.2 PKC-Based Search vs. SKC-Based Search
	PKC-Based Search
	SKC-Based Search

	2.3 Exact Keyword Search vs. Fuzzy Keyword Search
	2.4 Secure Index-Based Search
	Index Structure
	Secure Search Algorithm
	Similarity-Based Ranking

	3 Privacy-Preserving Multi-keyword Ranked Search
	3.1 Technical Overview for MRSE
	Coordinate Matching
	Search with Secure Inner Product Evaluation

	4 Improvement on Search Accuracy and Efficiency
	4.1 Background
	4.2 Technical Overview of MTS
	Vector Space Model
	Secure Index Scheme
	Efficient Tree-Based Search Algorithm

	5 Conclusion
	References

	Towards Data Confidentiality and a Vulnerability Analysis Framework for Cloud Computing
	1 Introduction
	2 Hybrid Cloud
	3 Risk Aware Data Processing Over Hybrid Clouds
	3.1 Criteria for Workload Distribution
	3.2 Workload Partitioning Problem (WPP)
	3.3 WPP Solution for Fully Hybrid Setting
	Dynamic Programming Approach to Solve WPP
	Experimental Results

	3.4 Risk-Aware MapReduce Over Hybrid Clouds

	4 Software Vulnerability Assessment on the Cloud
	4.1 Vulnerability Assessment Techniques and Tools
	4.2 Vulcan: Vulnerability Assessment Framework for Cloud Computing

	5 Conclusion
	References

	Securing Mission-Centric Operations in the Cloud
	1 Introduction
	2 Background
	2.1 Cloud Infrastructure
	2.2 Missions

	3 Secure Mission Deployment
	4 Mission Protection
	5 Fault Tolerance Management
	6 Conclusions
	References

	Computational Decoys for Cloud Security
	1 Introduction
	2 Threat Model
	3 Design
	3.1 Security Model
	3.2 Target Integration

	4 Decoy Generation
	4.1 Early Prototype

	5 Related Work
	6 Conclusion
	References

	Towards a Data-Centric Approach to Attribution in the Cloud
	1 Introduction
	1.1 The Provenance Approach
	1.2 Research Challenges

	2 Provenance Model
	2.1 System Model
	Example: Network Routing

	2.2 Execution Traces
	2.3 Provenance Model
	Example: MinCost Routing

	3 Provenance Maintenance and Querying
	3.1 Storage Model
	Example Tables

	3.2 Provenance Maintenance
	3.3 Proactive and Reactive Maintenance
	3.4 Provenance Querying

	4 Secure Provenance
	4.1 Threat Model and Assumptions
	Compromises

	4.2 Approach Overview
	Approximate Provenance Using Evidence
	Definition: STAP

	4.3 Secure Maintenance and Querying
	Secure Logging for Provenance Maintenance
	Secure Provenance Querying

	4.4 Evaluation
	Usability

	5 Related Literature
	5.1 Attribution in Distributed Systems
	Replay-Based Debugging
	Log-Based Forensics
	Accountability
	Proofs of Misbehavior

	5.2 Provenance
	Provenance Model
	Maintenance and Querying
	Applications
	Provenance Security
	Provenance Privacy

	6 Conclusion
	6.1 Future Research Directions
	Usability and Adoption
	Privacy and Confidentiality
	Fault Diagnosis and Recovery
	Provenance-Driven Invariant Generation

	References

	Software Cruising: A New Technology for Building Concurrent Software Monitor
	1 Introduction
	2 Software Cruising
	2.1 Architecture
	2.2 Features
	Leveraging Multicore Architectures for Concurrent Security Monitoring
	Protecting Monitor Threads from Malware
	Non-blocking and Lock-Free
	Monitor Kill-Safe
	Efficiency
	Scalability
	One-to-One and One-to-Many Virtual Machine (VM) Monitoring

	2.3 Applications

	3 Cruiser: Lock-Free Concurrent Heap Buffer Overflow Monitoring
	3.1 Introduction
	3.2 Design
	Cruiser Architecture
	Ring
	Segmented Lock-Free Linked List

	3.3 Results
	Effectiveness
	Performance Overhead
	Scalability

	4 Kruiser: Semi-synchronized Non-blocking OS Kernel Cruising
	4.1 Introduction
	4.2 Design
	Challenges
	Architecture
	Kernel Cruising

	4.3 Results
	Effectiveness
	Performance Overhead
	Scalability

	5 Discussion
	5.1 Detection Latency
	5.2 Guaranteed Detection
	5.3 Cloud Cruising

	6 Related Work
	6.1 Buffer Overflow Detection
	6.2 System Integrity
	6.3 Information Flow Integrity
	6.4 Self-Healing Software

	7 Conclusion
	References

	Controllability and Observability of Risk and Resilience in Cyber-Physical Cloud Systems
	1 Introduction
	2 Controllability, Observability, and Problem Statement
	3 Cybersecurity Modeling of a Cyber-Physical System
	3.1 Modeling a Linear Cybersecurity System
	3.2 Modeling a Nonlinear Cybersecurity System
	3.3 Shaping Functions of Inputs and System State Variables in Model for Controllability and Observability

	4 Deployment of Controllable Input Signals at Critical Network Nodes
	4.1 Risk, Control, and Resilience Scores of Nodes Using Bayesian Network
	4.2 Identifying and Prioritizing Critical Nodes
	4.3 Feeding Critical Nodes with Independent Input Signals for Assisting Controllability

	5 Conclusions
	References

