Sushil Jajodia - Krishna Kant
Pierangela Samarati - Anoop Singhal
Vipin Swarup - Cliff Wang Editors

' Secure
Cloud
Computing

@ Springer

Secure Cloud Computing

Sushil Jajodia ¢ Krishna Kant
Pierangela Samarati * Anoop Singhal
Vipin Swarup e CIliff Wang

Editors

Secure Cloud Computing

@ Springer

Editors

Sushil Jajodia

Center for Secure Information Systems
George Mason University

Fairfax, VA, USA

Pierangela Samarati
University of Milan

Krishna Kant

Center for Secure Information Systems
George Mason University

Fairfax, VA, USA

Anoop Singhal
Computer Security Division

National Institute of Standards
and Technology (NIST)

Crema, Italy

Vipin Swarup Gaithersburg, MD, USA
The MITRE Corporation
McLean, VA, USA Cliff Wang
Computing and Information Science
Division

Information Sciences Directorate
Triangle Park, NC, USA

Images can be viewed in color by visiting the book’s web page on SpringerLink or downloading
the eBook version.

ISBN 978-1-4614-9277-1
DOI 10.1007/978-1-4614-9278-8
Springer New York Heidelberg Dordrecht London

ISBN 978-1-4614-9278-8 (eBook)

Library of Congress Control Number: 2013957058

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Cloud computing continues to experience a rapid proliferation because of its
potential advantages with respect to ease of deploying required computing capacity
as needed and at a much lower cost than running an owned computing infrastructure.
However, the lack of ownership brings in myriad security and privacy challenges
that are quite difficult to resolve. The purpose of this book is to provide a state-of-
the-art coverage of the techniques to address these issues at all levels of the stack
ranging from hardware mechanisms to application level techniques. It is hoped that
the book will be useful to researchers, practitioners, and students in further research
on the subject and the implementation of the techniques in real-life systems.

The term cloud computing has been used for a variety of distributed computing
environments including some traditional ones. For example, a computing infras-
tructure owned by the organization is often referred to as a “private cloud”, which
may or may not be any different from a traditional virtualized data center owned
by the organization. The distinction may come if multiple entities or departments
within the organization share the same infrastructure, but have their own privacy,
information sensitivity, and security concerns. In contrast, a “public cloud” refers
to a facility owned and operated by a separate entity and available for use by
any organization or individual. Ownership and operation models in between these
extremes are also possible, such as a cloud intended for use by enterprises that
provides more restrictive use policies, tighter security, higher availability, etc. than
public clouds. Such “community clouds” have domain specific characteristics,
capabilities, and vulnerabilities different from private or public clouds.

User access to the cloud infrastructure could be provided at varying levels
ranging from underlying physical infrastructure controlled directly by the user all
the way up to built-in software exposed to the users. Traditionally, three specific
levels have been identified: TaaS (Infrastructure as a Service), PaaS (Platform as a
Service), and SaaS (Software as a Service). The challenges in providing the required
security and privacy vary across the levels, with lower level access resulting in more
difficult challenges in protecting the resources from misuse and attacks.

In recent years, there have been numerous incidents of exposure of confidential
data either accidentally or as a result of hacker attacks. Although many of these

vi Preface

incidents are not specific to cloud computing, the increasing adoption of cloud
computing by the government and businesses has raised the specter of perhaps even
more damaging information leaks in the future. For example, the Cloud Security
Alliance (CSA) has identified “The Notorious Nine” cloud computing threats for
2013 that are likely to persist in the future as well (see https://cloudsecurityalliance.
org/research/top-threats/). The most significant threats include: (a) exploitation of
side-channel information by VMs to extract sensitive information about other VMs,
including the cryptographic keys, (b) data loss due to accidents or physical hazards,
(c) illegal access to credentials or penetration of critical entities such as hypervisor
by hackers, (d) weak APIs and interfaces, (e) denial of service or other attacks
using the cloud infrastructure, (f) and insider attacks (including the service or
infrastructure providers). Significantly, a common theme identified in the list of
threats is the vulnerabilities brought about by the solutions themselves. This is
normally a result of increased complexity and hence vulnerabilities arising from
software bugs and additional configuration data. For example, the keys and other
parameters needed by cryptographic algorithms must themselves be managed and
protected against attacks and accidental loss.

A key attribute of cloud computing is the involvement of multiple parties
that provide or use the infrastructure or services. These parties could form a
natural hierarchy with physical infrastructure providers at the bottom and the end
users at the top. For example, a cloud computing service provider or a broker
may use physical infrastructure provided by one or more lower level entities,
and expose services or virtual infrastructures used by end users or application
service providers. The sharing of increasingly sophisticated and larger computing
infrastructures among multiple parties makes cloud computing security a very
challenging undertaking. The main reasons include:

1. Lack of trust between various parties up and down the hierarchy (e.g., between
the cloud service provider and the physical infrastructure provider if they
are different, or between service provider and the user) and across a level
(between service providers or users running on the same shared infrastructure).
The trust model drives the level of information access granted among parties
and protections implemented to avoid potential abuse. Some protections (e.g.,
encryption) may rule out certain operations within the cloud or make them very
expensive.

2. Complex privacy and anonymity requirements for information exchanges
between various parties. This drives mechanisms for obfuscating and restricting
access to information content, a careful control of association between different
pieces of information, and avoidance of attribution of information to specific
parties. These requirements may dictate what data can be kept where and where
the operations on the data take place.

3. Operational disruption, integrity violation, and information leaks caused by
attacks that may originate not only from malicious outsiders but also from
legitimate providers and users of the cloud. These aspects in turn drive the level
of protection that needs to be built at various layers including physical infras-
tructure, communication protocols, data storage and transmission, middleware,
etc.

https://cloudsecurityalliance.org/research/top-threats/
https://cloudsecurityalliance.org/research/top-threats/

Preface vii

The chapters in this book address recent advances in addressing some of these
security and privacy issues. Each chapter is intended to be self-contained, although
the reader is expected to have working knowledge of the security and privacy field.
It is hoped that the book will fill an important need in the rapidly emerging field of
cloud computing security.

Images can be viewed in color by visiting the book’s web page on SpringerLink
or downloading the eBook version.

Fairfax, VA, USA Sushil Jajodia
Fairfax, VA, USA Krishna Kant
Crema, Italy Pierangela Samarati
Gaithersburg, MD, USA Anoop Singhal
McLean, VA, USA Vipin Swarup

Triangle Park, NC, USA Cliff Wang

Acknowledgements

We are extremely grateful to the numerous contributors to this book. In particular, it
is a pleasure to acknowledge the authors for their contributions. Special thanks go to
Courtney Clark, Associate Editor at Springer for her support of this project. We also
wish to thank the Army Research Office for their financial support under the grant
number W91 1NF-12-1-0595. Part of the work was performed while Sushil Jajodia
was a Visiting Researcher at the US Army Research Laboratory.

ix

Contents

Cryptographic Key Management Issues and Challenges

N Cloud Servicesoviiiiiiii i 1
Ramaswamy Chandramouli, Michaela Iorga,

and Santosh Chokhani

Costs and Security in Cloudscoooiiiiiiiiiiiiiiiiiiiiiiiiiiees 31
Yao Chen and Radu Sion

Hardware-Enhanced Security for Cloud Computing 57

Jakub Szefer and Ruby B. Lee

Cloud Computing Security: What Changes
with Software-Defined Networking? ..., 77
Mauricio Tsugawa, Andréa Matsunaga, and José A.B. Fortes

Proof of Isolation for Cloud Storagecooiiiiiiiiiiiiii. 95
Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing

Selective and Fine-Grained Access to Datainthe Cloud 123
Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela
Samarati

Enabling Collaborative Data Authorization Between
Enterprise Cloudso i 149
Meixing Le, Krishna Kant, and Sushil Jajodia

Making Query Execution Over Encrypted Data Practical 171
Ken Smith, M. David Allen, Hongying Lan, and Andrew Sillers

Privacy-Preserving Keyword Search Over Encrypted Data
inCloud Computing ... e 189
Wenhai Sun, Wenjing Lou, Y. Thomas Hou, and Hui Li

xi

xii

Towards Data Confidentiality and a Vulnerability Analysis
Framework for Cloud Computing
Kerim Y. Oktay, Mahadevan Gomathisankaran, Murat
Kantarcioglu, Sharad Mehrotra, and Anoop Singhal

Securing Mission-Centric Operations in the Cloud
Massimiliano Albanese, Sushil Jajodia, Ravi Jhawar,
and Vincenzo Piuri

Computational Decoys for Cloud Security
Georgios Kontaxis, Michalis Polychronakis,
and Angelos D. Keromytis

Towards a Data-Centric Approach to Attribution in the Cloud
Wenchao Zhou

Software Cruising: A New Technology for Building Concurrent
Software Monitorccooiiiiiiiiiiiiiiiiiii i
Dinghao Wu, Peng Liu, Qiang Zeng, and Donghai Tian

Controllability and Observability of Risk and Resilience
in Cyber-Physical Cloud Systemsooue
Hasan Cam

Contents

Cryptographic Key Management Issues
and Challenges in Cloud Services

Ramaswamy Chandramouli, Michaela Iorga, and Santosh Chokhani

Abstract To interact with various services in the cloud and to store the data
generated/processed by those services, several security capabilities are required.
Based on a core set of features in the three common cloud services — Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS),
we identify a set of security capabilities needed to exercise those features and the
cryptographic operations they entail. An analysis of the common state of practice
of the cryptographic operations that provide those security capabilities reveals that
the management of cryptographic keys takes on an additional complexity in cloud
environments compared to enterprise IT environments due to: (a) difference in
ownership (between cloud Consumers and cloud Providers) and (b) control of
infrastructures on which both the Key Management System (KMS) and protected
resources are located. This document identifies the cryptographic key management
challenges in the context of architectural solutions that are commonly deployed to
perform those cryptographic operations.

1 Introduction

Encryption and access control are the two primary means for ensuring data
confidentiality in any IT environment. In situations where encryption is used as a
data confidentiality assurance measure, the management of cryptographic keys is a
critical and challenging security management function, especially in large enterprise

R. Chandramouli (><) « M. Iorga

National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8930,
Gaithersburg, MD 20899, USA

e-mail: mouli @nist.gov; Michaela.lorga@nist.gov

S. Chokhani
CygnaCom Solutions, 7925 Jones Branch Drive, Suite 5400, McLean, VA 22102, USA
e-mail: SChokhani @cygnacom.com

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8_1, 1
© Springer Science+Business Media New York 2014

mailto:mouli@nist.gov
mailto:Michaela.Iorga@nist.gov
mailto:SChokhani@cygnacom.com

2 R. Chandramouli et al.

data centers, due to sheer volume and data distribution (in different physical and
logical storage media), and the consequent number of cryptographic keys. This
function becomes more complex in the case of a cloud environment, where the
physical and logical control of resources (both computing and networking) is split
between cloud actors (e.g. Consumers, Providers and Brokers) (see Sect. 2.2 below
and NIST SP 500-292 for more details).

The objectives of this chapter are to identify:

(a) The cryptographic key management issues that arise due to the distributed
nature of IT resources, as well the distributed nature of their control, the latter
split among multiple cloud actors. Furthermore, the pattern of distribution
varies with the type of service offering — Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS), and

(b) The special challenges involved in deploying cryptographic key management
functions that meet the security requirements of the cloud Consumers,
depending upon the nature of the service and the type of data gener-
ated/processed/stored by the service features.

In this chapter, we address the following topics:

. Section 1 provides an overview of cryptographic key management;

. Section 2 provides a summary of the cloud computing concepts, including a
reference architecture (cloud actors, cloud service types and deployment models)
as identified in NIST standards; and

3. Section 3 builds on the previous sections to identify a core set of features for the

three main cloud service types — IaaS, PaaS and SaaS: the security capabilities

(SC) required to exercise those features, architectural solutions available to meet

the security capabilities and the consequent key management challenges.

DN =

In order to ensure that cryptographic mechanisms provide the desired security,
the following criteria should be met with regards to their three main components —
Algorithms (and associated modes of operation), Protocols and Implementation:

1. The cryptographic algorithms and associated modes of operation deployed
should have been scrutinized, evaluated, and approved using a review process
that is open and includes a wide range of experts in the field. Examples of such
approved algorithms and modes are found in National Institute of Standards
and Technology’s Federal Information Processing Standards (FIPS) and Special
Publications (SPs), and in the Internet Engineering Task Force (IETF) Request
for Comment (RFC) documents. The specific NIST documents pertaining to
cryptographic algorithms and associated modes of operation are: FIPS 186-3
for Digital Signatures, FIPS 180-4 for Secure Hash, SP 800-38A for modes of
operation and SP 800-56A & SP 800-56B for key establishment.

2. The cryptographic protocols used should have been scrutinized, evaluated, and
approved using a review process that is open and includes a wide range of experts
in the field. IETF protocol specifications for Secure Shell (SSH) and Transport
Layer Security (TLS) are examples that meet these criteria.

Cryptographic Key Management Issues and Challenges in Cloud Services 3

3. The implementation of a cryptographic algorithm or protocol should undergo a
widely recognized and reputable independent testing for verification of confor-
mance to underlying specifications. NIST’s Cryptographic Algorithm Validation
Program (CAVP) and Cryptographic Module Validation Program (CMVP) are
examples of such independent testing programs.

2 Cryptographic Key Management Overview

In this section, we review the two broad categories of cryptographic keys, list the
most commonly used key types, identify the key states and chart the resulting
transition diagram. We then proceed to describe the most important key management
functions (also referred to as key lifecycle operations) and list the generic security
requirements associated with these functions.

2.1 Key Types

Cryptographic keys fall into two broad categories:

1. Secret key: A key that is generally used to (1) perform encryption/decryption
using symmetric cryptographic algorithms; and/or (2) to provide data integrity
using message authentication codes (i.e., Hash based Message Authentication
Code or HMAC) or an encryption mode of operation that also provide data
integrity. A secret key is also called a symmetric key, since the same key is
required for encryption and decryption or for integrity value generation and
integrity verification.

2. Public/Private Key Pair: A pair of mathematically related keys used in asym-
metric cryptography for authentication, digital signature or key establishment. As
the name indicates, the private key is used by the owner of the key pair and kept
secret and should be protected at all times, while the public key can be published
and used be the relying party to complete the protocol or invert the operations
performed with the private key.

From these broad categories one can determine the most commonly used
key types in a cloud computing environment. This is not to say that a cloud
implementation may not have additional types of keys.

1. Public/Private Authentication Key Pair: This key pair is used by one party
(peer, client or server) to authenticate to the other party. Its typical use entails
combining a random challenge with the signer-generated random number and
signing the result for the benefit of the challenger who wishes to authenticate

R. Chandramouli et al.

the private-key holder. Examples of usage include client-authenticated Transport
Layer Security (TLS), Virtual Private Network (VPN) authentication, and smart
card-based logon. An authentication key pair is generally used in a network
environment and is generally used for long-term use (e.g., up to 3 years)

. Public/Private Signature Key Pair: This private key of the key pair is used by
one party to digitally sign a message/data, and the corresponding public key is
used to verify the signature. Examples of the usage of a signature key pair are
signed Secure/Multipart Internet Mail Extensions (S/MIME) messages, signed
electronic documents, and signed code. In some implementations, a key pair may
be used for both authentication and signature functions. A signature key pair is
generally used in a network environment and is generally used for long-term use
(e.g., up to 3 years). It may also be used to generate and verify signatures on
stored data.

. Public/Private Key Establishment Pair: This key pair is used to securely estab-
lish a key between parties. Examples of the use of a key pair for key establishment
are encrypting the symmetric key for S/MIME payload encryption/decryption
and encrypting the random secret to be sent from a TLS client to a server. It is
recommended that key establishment key pairs be distinct from authentication
and signature key pairs. However, it is recognized that some devices such as web
servers use the same key pair for key establishment and authentication. A key
establishment key pair is traditionally used in a network environment, but some
usage for stored data is also seen and can be envisioned. A key establishment key
pair is generally used for a pre-defined period for encryption (e.g., up to 3 years),
but is used for decryption for as long as the confidentiality of the data needs to
be protected.

. Symmetric Encryption/Decryption Key: A symmetric key is used to
encrypt and decrypt data or messages. For data-in-transit, a symmetric
encryption/decryption key may have a short life, typically for each message
(e.g., S’IMIME message) or for each session (for example a TLS session). For
stored data, the symmetric life of the encryption/decryption key tends to be as
long as the confidentiality of the data needs to be protected.

. Symmetric Message Authentication Code (MAC) Key: A symmetric key is
used to provide assurance for the integrity of data. There are three techniques
used to provide this assurance: (1) use a symmetric encryption algorithm and
a MAC mode of operation (e.g., CMAC using AES); (2) use a symmetric
encryption algorithm and an authenticated encryption mode of operation (e.g.,
GCM or CCM using AES); and (3) use a hash-based MAC (HMAC). For data-
in-transit, a symmetric MAC key has a short life, typically for a single message
or for a single session (for example a TLS session). For stored data, the life of
a symmetric MAC key tends to be for as long as the data needs to be protected.
Note that when authenticated encryption mode is used, the same key is used for
both the MAC and encryption/decryption, since both objectives are achieved by
invoking a single mode of operation.

Cryptographic Key Management Issues and Challenges in Cloud Services 5

6. Symmetric Key Wrapping Key: A symmetric key is used to encrypt a

symmetric key or an asymmetric private key. A Key Wrapping Key is also called
a Key Encrypting Key.

2.2 Key States

A symmetric key or public/private key pair can undergo the following states. This
is not to say that a key management implementation may not have additional states.
Alternatively, a key management implementation may have a subset of these states.

Generation: A symmetric key or public/private key pair is generated when
required.

Activation: A symmetric key or private key is activated when it is required to be
used. A public key is activated when it is made available or on the date indicated
in its associated metadata (e.g., notBefore date in an X.509 public key certificate).
Deactivation: A symmetric key or private key is deactivated when it is no longer
required for applying cryptographic protection to data. Deactivation of these keys
may be followed by destruction or archival. A public key is not deactivated.
It may expire (e.g., at the notAfter date in an X.509 public key certificate), or
may be suspended (e.g., via certificate revocation list (CRL) [refer RFC 4949] in
X.509 standard) or revoked (e.g., via CRL in X.509 standard).

Suspension: A key may be suspended from use for a variety of reasons, such
as an unknown status of the key or due to the key owner being temporarily
away. In the case of the public key, suspension of the companion private key is
communicated to the relying parties. This may be communicated as an “On hold”
revocation reason code in a CRL and in an Online Certificate Status Protocol
(OCSP) response

Expiration: A key may expire due to the end of its crypto period [refer RFC
4949]. In the case of a public key, an expiration date is indicated in the associated
metadata (e.g., notAfter date in X.509 certificates).

Destruction: A key is destroyed when it is no longer needed.

Archival: A key may be archived when it is no longer required for normal use,
but may be needed after the key’s cryptoperiod. An example for secret or private
keys is the possible decryption of archived data. An example for public keys is
the verification of archived signed documents.

Revocation: A revocation is explicitly stated with respect to public keys;
however, the revocation also applies to the corresponding private key. Revocation
information is securely communicated to the relying parties, for example, as
CRLs or OCSP responses, in the case of X.509 public key certificates. Secret
keys are also “revoked”, often by including them on lists, such as a compromised
key list.

The following is the state diagram for the key states (Fig. 1).

6 R. Chandramouli et al.

Generation

Revocation

Archival

Fig. 1 State diagram for the key states

2.3 Key Management Functions

The following are the important key management functions:

* Generate Key: The generation of good-quality keys is critical to security. Keys
for a cryptographic algorithm should be generated in cryptographic modules that
have been approved for the generation of keys for that algorithm.

* Generate Domain Parameters: Discrete Logarithm-based algorithms require
the generation of domain parameters prior to the generation of the keys; the
keys are generated using those domain parameters. The domain parameters for
an algorithm shall be generated in approved cryptographic modules that have
been approved for their generation. Since domain parameters can be common to
a broad community of users, key generation need not entail domain parameter
generation. For example, defining Suite B P-256 curve defines all the domain
parameters for the attendant ECDSA and ECDH algorithms.

* Bind Key and Metadata: A key may have associated data, such as the time
period of use, usage constraints (such as authentication, encryption, and/or key
establishment), domain parameters, and security services for which they are
used, such as source authentication, integrity, and confidentiality protection. This
function provides assurance that the key is associated with the correct metadata.

Cryptographic Key Management Issues and Challenges in Cloud Services 7

* Bind a Key to an Individual: The identifier of the individual or other entity that
owns a key is considered as part of the key’s metadata, but this association is
sufficiently critical to be listed as a distinct function.

* Activate Key: This function transitions a key to the active state. It is often done
in conjunction with key generation.

* Deactivate Key: This function is generally done when a key is no longer needed
for applying cryptographic protection. For example, when a key has expired, or
is replaced by another key.

* Backup Key: A key is backed by the owner, the key management infrastructure
or a third party in order to reconstitute the key when it is accidentally destroyed
or otherwise unavailable. When a private or secret key is backed up by the key
management infrastructure or by a third party, the function is also referred to as
“key escrow”.

* Recover Key: This function is complementary to the key backup function and
is invoked when the key is unavailable for some reason and is required by the
authorized parties. Key backup and recovery generally applies to the symmetric
and private keys.

* Modify Metadata: This function is invoked when metadata bound to a key needs
to change. The renewal of a public key certificate is an example of this function
where the validity period for the public key is changed.

e Rekey: This function is used to replace the existing key with a new key.
Generally, the existing key (the key being replaced) plays a role in authentication
and authorization for replacement.

* Suspend a Key: This function is used to temporarily cease the use of a key. It is
akin to reversible revocation. This function may need to be invoked if the status
of a key is undetermined or if the key owner wishes to temporarily suspend its
use (e.g., for extended leave). For secret keys, this can also be accomplished via
key deactivation. For public keys and the companion private key, this is generally
done using suspension notification of the public key.

* Restore a Key: This function is used to restore a suspended key once its secure
status is ascertained. For secret keys, this can also be accomplished via key
activation. For public keys and the companion private keys, this is generally
done using a revocation notification where the revoked public key entry is deleted
implying the key is valid.

* Revoke a Key: This function is used to inform the relying parties to stop using a
public key. There may be a variety of reasons for this, including the compromise
of companion private key, and that the owner has stopped using the companion
private key.

* Archive a Key: This function is used to store a key in long-term storage after it
has been deactivated, expired, and/or compromised.

* Destroy a Key: This function is used to zeroize a key when it is no longer to be
used.

* Manage TA Store: This function is used by the relying party to determine what
trust anchors to trust for what purpose. A trust anchor is a public key and its
associated metadata that the relying party explicitly trusts and uses to establish

8 R. Chandramouli et al.

trust in other public keys via transitive trust, such as a public-key certification
path that is a series of public key certificates where the digital signature in one
certificate can be used to verify the digital signature on the next certificate.

2.4 Key Management: Generic Security Requirements

The following are general key management security requirements:

1. Parties performing key management functions are properly authenticated and
their authorizations to perform the key management functions for a given key
are properly verified.

2. All key management commands and associated data are protected from spoofing,
i.e., source authentication is performed prior to executing a command.

3. All key management commands and associated data are protected from unde-
tected, unauthorized modifications, i.e., integrity protection is provided.

4. Secret and private keys are protected from unauthorized disclosure.

5. All keys and metadata are protected from spoofing, i.e., source authentication is
performed prior to accessing keys and metadata.

6. All keys and metadata are protected from undetected, unauthorized modifica-
tions, i.e., integrity protection is provided.

7. When cryptography is used as a protection mechanism for any of the above, the
security strength of the cryptographic mechanism used is at least as strong as the
security strength required for the keys being managed,

There are significant challenges to implement these key management security
requirements in cloud computing over unsecure public networks. In the next sections
we review the cloud computing reference architecture and identify, for the three
main cloud service types — [aaS, PaaS and SaaS, a core set of features, the security
capabilities (SC) required to exercise those features, architectural solutions available
to meet the security capabilities and the consequent key management challenges.

3 Cloud Computing Environment: Evolution
and State of Practice

3.1 Three Generations of Internet

The evolution of the internet can be divided into three generations: in the 1970s
the first generation was marked by expensive mainframe computers accessed from
terminals; the second generation was born in the late 1980s and early 1990s, and was
identified by the explosion of personal computers with Graphical User Interfaces
(GUIs); the first decade of the twenty-first century brought the third generation,
defined by mobile computing, the “internet of things” and cloud computing.

Cryptographic Key Management Issues and Challenges in Cloud Services 9

In 1997, Professor Ramnath Chellappa of Emory University, defined cloud
computing for the first time while a faculty member at the University of South
California, as an important new “computing paradigm where the boundaries of
computing will be determined by economic rationale rather than technical limits
alone.” Even though the international IT literature and media have come forward
since then with a large number of definitions, models and architectures for cloud
computing, autonomic and utility computing were the foundations of what the
community commonly referred to as ‘“cloud computing”. In the early 2000s,
companies started rapidly adopting this concept upon the realization that cloud
computing could benefit both the Providers as well as the Consumers of services.
Businesses started delivering computing functionality via the Internet, enterprise-
level applications, web-based retail services, document-sharing capabilities and
fully-hosted IT platforms, to mention only a few cloud computing use cases
of the 2000s. The latest widespread adoption of virtualization and of service-
oriented architecture (SOA) promulgated cloud computing as a fundamental and
increasingly important part of any delivery and critical-mission strategy, enabling
existing and new products and services to be offered and consumed more efficiently,
conveniently and securely. Not surprisingly, cloud computing became one of the
hottest trends in the IT armory, with a unique and complementary set of properties,
such as elasticity, resiliency, rapid provisioning, and multi-tenancy.

3.2 Cloud Computing Definition (by NIST)

Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal
management efforts or service provider interaction. Enterprises can use these
resources to develop, host and run services and applications on demand in a
flexible manner in any devices, anytime, and anywhere. According to the U.S.
National Institute of Standards and Technology’s (NIST) definition published in the
NIST Special Publication SP 800-145, “cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction.” This definition is widely accepted as a valuable contribution
toward providing a clear understanding of cloud computing technologies and cloud
services and it has been submitted as the U.S. contribution for an International
standardization.'

The NIST definition also provides a unifying view of five essential characteristics
that all cloud services exhibit: on-demand self-service, broad network access,

Thttp://www.nist.gov/itl/csd/cloud-102511.cfm

http://www.nist.gov/itl/csd/cloud-102511.cfm

10 R. Chandramouli et al.

resource pooling, rapid elasticity, and measured service. Furthermore, NIST iden-
tifies a simple and unambiguous taxonomy of three “service models” available to
cloud Consumers (Infrastructure-as-a-Service (IaaS), Platform-as-a Service (PaaS),
Software-as-a-Service (SaaS)) and four “cloud deployment modes” (Public, Private,
Community and Hybrid) that together categorize ways to deliver cloud services.
Since the cloud service model is an important architectural factor when discussing
key managements aspects in a cloud environment, we are reproducing below the
definitions for the service models provided by NIST in SP 800-145, “The NIST
definition of Cloud Computing”:

1. Infrastructure as a Service (IaaS) — The capability provided to the Consumer
is to provision processing, storage, networks, and other fundamental computing
resources where the Consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The Consumer does not manage
or control the underlying cloud infrastructure, but has control over operating
systems, storage, deployed applications, and possibly limited control of select
networking components (e.g., host firewalls).

2. Platform as a Service (PaaS) — The capability provided to the Consumer is to
deploy Consumer-created or acquired applications onto the cloud infrastructure
that are created using programming languages and tools supported by the
Provider. The Consumer does not manage or control the underlying cloud
infrastructure, including network, servers, operating systems, or storage, but
has control over the deployed applications and possibly the application-hosting
environment configurations.

3. Software as a Service (SaaS) — The capability provided to the Consumer is to use
the Provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through a thin client interface, such
as a web browser (e.g., web-based email). The Consumer does not manage or
control the underlying cloud infrastructure, including network, servers, operating
systems, storage, or even individual application capabilities, with the possible
exception of limited user-specific application-configuration settings.

TaaS allows cloud Consumers to run any operating systems and applications of
their choice on the hardware and resource abstraction layer (hypervisors) furnished
by the cloud Provider. A Consumer’s operating systems and applications can be
migrated to the cloud Provider’s hardware, potentially replacing a company’s data
center infrastructure.

PaaS allows Consumers to create their own cloud applications. Basically, the
cloud Provider renders a virtualized environment and a set of tools to allow the
creation of new web applications. The Cloud Provider also furnishes the hardware,
operating systems and commonly used system software and applications, such as
DBMS, Web Server, etc.

SaaS allows cloud Consumers to run online applications. Off-the-shelf applica-
tions are accessed over the Internet. The cloud Provider owns the applications, and
the Consumers are authorized to use them in accordance with a Service Agreement
signed between parties.

Cryptographic Key Management Issues and Challenges in Cloud Services 11

Cloud computing provides a convenient, on-demand way to access a shared
pool of configurable resources (e.g., networks, servers, storage, applications, and
services), which enables users to develop, host and run services and applications
on demand in a flexible manner in any devices, anytime, and anywhere. Cloud
services are those services that are expressed, delivered and consumed over a
public network, a private network or in some combination (community or hybrid).
These services are usually delivered in one of the following service categories
identified by NIST: TaaS, PaaS and SaaS. Cloud Provider and Broker may also
identify other Categories of services (such as Network-as-a-Service, Storage-as-
a-Service, carrier-as-a-Service) that are practical components already embedded
in the service models identified by NIST, and are not stand-alone service models
that identify particular cloud architectures. Some cloud Providers might provide
abstracted hardware and software resources that may be offered as a service. This
allows customers and partners to develop and deploy new applications that can be
configured and used remotely. Leveraging cloud services that provide opportunities
to provision resources elastically enables enterprises to launch or change their
business quickly and easily as needed.

3.3 Cloud Computing Reference Architecture (from NIST)

In the Special Publication SP 500-292, NIST has published the NIST Cloud
Computing Reference Architecture? (RA). This architecture is a logical extension
of the NIST cloud computing definition. It is a generic high-level conceptual model
that is an effective tool for discussing the requirements, structures, and operations
of cloud computing. The model is not tied to any specific vendor products, services
or reference implementation, nor does it provide prescriptive solutions. The RA
defines a set of cloud Actors and their activities and functions that can be used
in the process of orchestrating a cloud Ecosystem. The Cloud Computing RA
relates to a companion cloud computing taxonomy and contains a set of views and
descriptions that are the basis for discussing the characteristics, uses and standards
for cloud computing. The Actor-based model is intended to serve the expectations
of the stakeholders by allowing them to understand the overall view of roles and
responsibilities in order to assess and manage the risk by implementing adequate
security controls.

The NIST Reference Architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
architecture of a specific cloud computing system; instead, it is a tool for describing,
discussing, and developing a system-specific architecture using a common frame-
work of reference.

Zhttp://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/
ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

12 R. Chandramouli et al.

As shown in Fig. 2 this architecture outlines the five major cloud Actors;
Consumer, Provider, Broker, Carrier and Auditor.

Cloud Provider " Cloud
Cloud Cloud Orchestration h Broker

Consumer .
Service Layer Cloud Service

Saas Management ‘
Service
= Intermediation
PaaS
Cloud - -
Auditor Taa$ | f

- Service
Security Resource Abstraction and Control I Aggregation

Audit Layer

Privacy Impact " '
Audit] Physical Resource Layer ;
C Hadwae | Service
Aol | e
Audit
—

Cloud Carrier

Cross Cutting Concerns: Security, Privacy, etc

Fig. 2 NIST cloud computing security reference architecture approach (Courtesy of NIST, SP
500-292)

Each cloud Actor defined by the NIST RA is an entity (a person or an
organization) that participates in a transaction or process and/or performs tasks in
cloud computing. The definitions of the cloud Actors introduced by NIST in SP
500-292, NIST cloud Computing Reference Architecture, are reproduced below in
Table 1.

Table 1 Cloud actor definitions (Courtesy of NIST, SP 500-292)

Actor Definition

Cloud consumer A person or organization that maintains a business relationship with, and uses
service from, Cloud Providers

Cloud provider A person, organization, or entity responsible for making a service available to
interested parties

Cloud auditor A party that can conduct an independent assessment of cloud services,
information system operations, performance and security of the cloud
implementation

Cloud broker An entity that manages the use, performance and delivery of cloud services,
and negotiates relationships between Cloud Providers and Cloud
Consumers

Cloud carrier An intermediary that provides connectivity and transport of cloud services
from Cloud Providers to Cloud Consumers

Cryptographic Key Management Issues and Challenges in Cloud Services 13

In our latest work (draft documents and white papers), NIST identifies two types
of cloud Providers:

1. Primary Provider and
2. Intermediary Provider,

and two types of cloud Brokers:

1. Business Broker and
2. Technical Broker.

Figure 3, below, graphically depicts these two types of Providers and the two
types of Brokers. It is important to note that, in particular, cloud environments where
an Intermediary Provider partners with a Primary Provider in offering cloud ser-
vices, the key management functions that fall under the Provider’s responsibilities
might need to be divided among the two Providers, depending on the architectural
details of the offered cloud service. From the cloud Consumer’s perspective this
segregation is not visible.

A Primary Provider offers services hosted on an infrastructure that it owns. It may
make these services available to Consumers through a third party (such as a Broker
or Intermediary Provider), but the defining characteristic of a Primary Provider is
that it does not obtain the sources of its service offerings from other Providers.

An Intermediary Provider has the capability to interact with other cloud Providers
without offering visibility or transparency into the Primary Provider(s). An Interme-
diary Provider uses services offered by a Primary Provider as invisible components
of its own service, which it presents to the customer as an integrated offering. From
a security perspective, all security services and components required of a Primary
Provider are also required of an Intermediary Provider.

A Business Broker only provides business and relationship services, and does
not have any contact with the cloud Consumer’s data, operations, or artifacts (e.g.,
images, volumes, firewalls) in the cloud and, therefore, has no responsibilities in
implementing any key management functions, regardless of the cloud architecture.
Conversely, a Technical Broker does interact with a Consumer’s assets; the Tech-
nical Broker aggregates services from multiple cloud Providers and adds a layer
of technical functionality by addressing single-point-of-entry and interoperability
issues.

There are two key defining features of a cloud Technical Broker that are distinct
from an Intermediary Provider:

1. The ability to provide a single consistent interface (for business or technical
purposes) to multiple differing Providers, and

2. The transparent visibility that the Broker allows into who is providing the
services in the background — as opposed to Intermediary Providers that do not
offer such transparency.

Since the Technical Broker allows for this transparent visibility, the Consumer
is aware of which key management functions are implemented by each Actor. This
case is different from the case in which an Intermediary Provider is involved, since

14 R. Chandramouli et al.

Composite Cloud Ecosystem Security Architecture

3 & & & & U ;i:_l?lrgtlaan" Plane

i Broker 2 | Brokerl Provider 2 | e Aﬁ_] Saas Cloud

4 Prof Provlj provider W provider1 |

“Separation” Plane
defining a:
| Paas Cloud

Broke: i 7 Broke Provider 2
Provider 1 =
{ Provider 1 | Proy F Provider 1

bl 50

-
Consu " “Separation” Plane
_ mer ! — defininga:
0 / laas Cloud

Fig. 3 Composite cloud ecosystem security architecture (Courtesy of NIST)

Differences in Scope and Security Controls

the Intermediary Provider is opaque, and the Consumer is unaware of how the
key management functions are divided, when applicable, between the Intermediary
Provider and the Primary Provider.

The NIST RA diagram in Fig. 2 also depicts the three service models discussed
earlier: TaaS, PaaS and SaaS in the “inverted L” representations, highlighting the
stackable approach of building cloud service. Additionally, the NIST RA diagram
identifies, for each cloud Actor, their general activities in a cloud ecosystem. This
Reference Architecture is intended to facilitate the understanding of the operational
intricacies in cloud computing. It does not represent the system architecture of a
specific cloud computing system; instead, it is a tool for describing, discussing, and
developing a system-specific architecture using a common framework of reference
that we plan to leverage in our later discussion of key management issues in a cloud
environment.

Cloud computing provides enterprises with significant cost savings, both in terms
of capital expenses (CAPEX) and operational expenses (OPEX), and allows them
to leverage leading-edge technologies to meet their information processing needs.
In a cloud environment, security and privacy are a cross-cutting concern for all
cloud Actors, since both touch upon all layers of the cloud computing Reference
Architecture and impact many parts of a cloud service. Therefore, the security
management of the resources associated with cloud services is a critical aspect of
cloud computing. In a cloud environment, there are security threats and security
requirements that differ for different cloud deployment models, and the necessary
mitigations against such threats and cloud Actor responsibilities for implementing
security controls depend upon the service model chosen and the service categories
elected. Many of the security threats can be mitigated with the application of
traditional security processes and mechanisms, while others require cloud-specific
solutions. Since each layer of the cloud computing Reference Architecture may

Cryptographic Key Management Issues and Challenges in Cloud Services 15

have different security vulnerabilities and may be exposed to different threats, the
architecture of a cloud-enabled service directly impacts its security posture and the
system’s key management aspects.

For each service model, Fig. 4 below uses a building-block approach to depict
a graphical representation of the cloud Consumer’s visibility and accessibility to
the “Security and Integration™ layer that hosts the key management in a cloud
environment. As the figure shows, the cloud Consumer has high visibility into
the “Security & Integration” layer and has control over the key management in
a laaS model, while the cloud Providers implement only the infrastructure-level
security functions (which are always opaque to Consumers). The Consumer has
limited visibility and limited key management control in a PaaS model, since the
cloud Provider implements the security functions in all lower layers except the
“Applications” layer. The cloud Consumer loses the visibility and the control in
a SaaS model, and in general, all key management functions are opaque to the cloud
Consumer, since the cloud Provider implements all security functions.

Infrastructure Platform Software
(as a Service) g (as a Service) (as a Service)
© —_
Runtimes 3

V

Ml Security & Integration

Databases

JOpUBA Aqvpaﬁeue

L

Jopuan Aq pabeuep

__4

Jopuan Aq pabeuepy

Fig. 4 Cloud service models and data protection (Courtesy of CIO Research Council [CRC])

In the following Section, we will discuss, for each service model, the Key
Management challenges encountered by cloud Actors in different use cases.

4 Cryptographic Key Management Challenges in the Cloud

As stated in Sect. 2, the secure management of the resources associated with cloud
services is a critical aspect of cloud computing. Cryptographic operations form
one of the main tasks of secure management. Hence, while cloud services provide
ubiquitous computing, elastic capabilities and self-configurable resources at lower
costs, they also entail performing several cryptographic operations (from a cloud
Consumer perspective) for the following:

16 R. Chandramouli et al.

* Secure Interaction of the Cloud Consumer with various services and
* Secure Storage of data generated/processed by those services.

The key management system (KMS) required to support cryptographic oper-
ations for the above functions can be complex, due to differences in ownership
and control of underlying infrastructures on which the KMS and the protected
resources are located. For example, though the ownership of data in cloud services
rests with the cloud Consumer, the data is physically resident on storage resources
controlled by the cloud Provider, and in many instances, the KMS required for
managing the cryptographic keys needed to protect that data have to be run on the
computing resources provided by the cloud Provider. This presents challenges to
a cloud Consumer seeking to obtain the necessary security assurance from those
cryptographic operations.

The driver for the set of cryptographic operations performed in the main cloud
service models (IaaS, PaaS and SaaS) depends upon the features that constitute those
services. Though there are slight variations in the feature set among different cloud
Providers, it is possible to identify a core set of features. Based on these core set
of features, we identify the security capabilities associated with the exercise of the
features, and from the state of practices using architectural solutions for achieving
those security capabilities, we derive the key management challenges for IaaS, PaaS
and SaaS service types in Sects. 3.1, 3.2, and 3.3, respectively. It must be noted
upfront that in all architectural solutions where cryptographic keys are stored in the
cloud, there is a limit to the degree of security assurance that the cloud Consumer
can expect to get, due to the fact that the logical and physical organization of the
storage resources are entirely under the control of the cloud Provider.

4.1 Challenges in Cryptographic Operations and Key
Management for laa$S

In the IaaS cloud type, the Consumer deploys its own computing resources in
the form of virtual machines (VMs) or leases them from the cloud Provider. The
leasing option involves checking out pre-built images offered by an IaaS cloud
Provider. The VM images that are checked out must be authenticated to ensure
that they are from authorized sources and have not been tampered with. After
a VM is configured, it has to be launched in the cloud Provider’s infrastructure
to become a running VM instance. The operation of launching the VM and the
subsequent lifecycle operations on the VM (such as Stop, Pause, Restart, Kill etc)
are performed by the IaaS cloud Consumer through access to the management
interface of the Hypervisor. Additionally, during operations or the use of cloud
services, the IaaS cloud Consumer has to interact with running VM instances
in a secure manner. These three operations — checking out a VM, performing
lifecycle operations (including launching) on a VM instance and secure interaction
with it — are performed by designated service-level administrators of the IaaS

Cryptographic Key Management Issues and Challenges in Cloud Services 17

cloud Consumer. IaaS cloud service security capabilities (SC) that enable these
operations are:

» JaaS-SC1: The ability to authenticate pre-defined VM Image Templates made
available by a cloud Provider for building functional, customized VM instances
that meet a cloud Consumer’s needs,

* JaaS-SC2: The ability to authenticate the API calls sent by the cloud Consumer
to the VM Management interface of the cloud Provider’s Hypervisor environ-
ment, and

» JaaS-SC3: The ability to secure the communication while performing adminis-
trative operations on VM instances

For each of the three security capabilities identified above, possible architectural
solutions (AS) are presented below that are based on known secure functions or
protocols. The cryptographic key management challenges associated with these AS
are also described and discussed.

IaaS-SC1 The ability to authenticate pre-defined VM Image Templates made
available by a cloud Provider for building functional, customized VM instances that
meet a cloud Consumer’s needs (Server Authentication Mechanism).

Architectural Solution:

When leasing VMs from laaS Providers, cloud Consumers are concerned that the
VM image templates being checked out might not be authentic. To mitigate this
concern, the templates can be digitally signed by the cloud Provider. The private
key of a public/private key pair that is used to sign the VM image templates should
be securely stored by the Provider and protected while in use (e.g., using FIPS 140-
2 validated cryptographic module). The Provider needs to make the corresponding
public key available to the Consumer in an authenticated manner (e.g., using an out-
of-band means or using a public key certificate). Alternative means of assuring the
integrity of the VM are: (a) the use of a cryptographic hash function (secure hash
function), such as SHA-256 computed over the VM code, which Consumers should
re-compute and verify against the value obtained using an out-of-band means; (b)
the use of cryptographic message authentication code (MAC) mechanisms (i.e.,
HMAC or a block-cipher-based MAC) using a cryptographic algorithm and a secret
shared by the Provider and the Consumers.

Key Management Challenges:

The authentication of the VM templates using one of the cryptographic techniques
referred above (i.e., digital signature, cryptographic hash function, or message
authentication code) entails the bootstrapping problem and hence, requires a com-
prehensive security analysis, rather than just an examination of the key management
challenge. Appendix provides this analysis for the three possible cryptographic
techniques for achieving IaaS-SC1 and a possible solution.

IaaS-SC2 The ability to authenticate the API calls sent by the cloud Consumer to
the VM Management interface of the cloud Provider’s Hypervisor environment.

18 R. Chandramouli et al.

Architectural Solution:

Although the responsibility for configuring the VMs lies with a cloud Consumer,
an laaS cloud Provider can implement functionality whereby the VM Management
Interface of the Hypervisor only accepts and executes authenticated API calls. Cloud
Consumers need to generate or possess a public/private key pair that will be used for
signing the calls submitted to the VM Management interface. The public key needs
to be bound to the Consumer’s identity in a public key certificate signed by a trusted
authority. The certificate is then made available to the VM Management Interface
of the Hypervisor to verify the signature of the calls submitted by the Consumer to
the VM instance. An alternative approach is to provide the capability for the cloud
Consumer to set up a secure session with the VM Management interface using either
SSH (refer IaaS-SC3) or TLS (refer IaaS-SC4).

Key Management Challenge:

Cloud Consumers need to secure the private key of the public/private key pair that
is used to sign the VM Management commands on their system (both at rest and
while in use).

IaaS-SC3 The ability to secure the communication while performing administra-
tive operations on VM instances.

Architectural Solution:

The service-level administrators of the IaaS Consumer need root/administrator
access to running VM instances deployed or leased by that Consumer. A typical
mechanism deployed to secure this access is Secure Shell (SSH) that provides a
framework for public/private (asymmetric) keys or password-based client authen-
tication techniques. A public/private key technique requires the cloud Consumer
to generate a public/private key pair and then associate the public key with the
Consumer’s account in the VM instance. The task of a VM recognizing the
Consumer as the owner of the companion private key is accomplished by appending
the public key to the authorized keys file in the VM instance that can support
SSH login through protocols such as File Transfer Protocol (ftp), Secure Copy
Protocol (scp), or console commands. Thus, SSH can be used to enable the VM
instance to authenticate the Consumer using cryptographic means. Further details
of the SSH protocol are described in Internet RFC 4253. This strong cryptographic
authentication prevents anonymous connection attempts to the VM instance, as well
as preventing authentication attacks (such as password guessing). Moreover, the
SSH protocol permits asymmetric keys to be used to perform an authenticated
ephemeral Diffie-Hellman (DH) key establishment. The symmetric session keys
calculated during this process are used to encrypt the payload and to generate
hash-based message authentication codes, thus providing both confidentiality and
integrity security services. When SSH is used, not only is the administrator
authenticated, but all the commands, responses, and payload are protected in
both directions (Consumer <—— VM) from eavesdropping and against undetected
modifications, and are cryptographically authenticated.

Cryptographic Key Management Issues and Challenges in Cloud Services 19

Key Management Challenges:

Cloud Consumers need to secure the private key of the public/private key pair that
is used to authenticate themselves, using the best enterprise security mechanisms. It
is important to note that, the Diffie-Hellman keys and the derived session keys are
ephemeral and generated or calculated on-the-fly. Thus, these keys do not require
persistent storage, and hence, their key management is not an issue.

After the service-level administrator of the cloud Consumer authenticates pre-
defined VM Images provided by the cloud Provider and checks them out (using
capability IaaS-SC1), customizes them to its requirements, launches them securely
in the hypervisor environment (using IaaS-SC2) of cloud Provider and performs
configuration maintenance through secure interaction with the launched VM
instances (using capability IaaS-SC3), the application-level administrator of the
cloud Consumer installs and configures various servers (web servers, Database
Management servers, etc.), application execution environments (i.e., Java VMs,
Java run time modules, etc.) and application executables (and in some instances,
source codes, as well) on those VM instances. Although the application-level
administrators do not configure VM instances (such as allocation/resizing of virtual
memory, CPU cores or virtual disks, etc.), they do have the need to setup secure
sessions with VM instances prior to being authenticated. Hence, in most practical
situations, the same service-level administrators of the cloud Consumer play the
role of application-level administrators as well. The administrators use the same
SSH technique and keys for secure application-level administration.

After applications are up and running on their leased VMs, the application users
of an IaaS cloud Consumer would like to interact with these applications securely
(through setting up secure sessions and strong authentication) and exercise the
various application features — depending upon the set of assigned permissions or
by assuming their assigned roles (which provide the permissions). Finally, there is
the need for Data Storage services for all categories (service-level administrators,
application-level administrators and application users) of IaaS Consumers. The
data storage services required may span different types of data, such as: (a) Static
Data — application source codes, Reference data used by applications, Archived data
and Logs, and (b) Application data — those generated and used by applications.
The application data in turn could be either Structured (e.g., Database data) or
Unstructured (e.g., files from social feeds).

The challenges in the secure interaction of the application users (as opposed to
application-level administrators) of IaaS cloud Consumers with IaaS cloud services
(both main services, such as executing the applications on VM instances, as well as
auxiliary services such as data storage) are:

» JaaS-SC4: The ability to secure the communication with application instances
running on VM instances for application users during cloud-service usage,

» JaaS-SCS: The ability to securely store static application support data securely
(data not directly processed by applications),

20 R. Chandramouli et al.

» JaaS-SCe: The ability to securely store application data in a structured form (e.g.,
relational form) securely using a Database Management System (DBMS),
» JaaS-SC7: The ability to securely store application data that is unstructured, and

IaaS-SC4 The ability to secure the communication with application instances
running on VM instances for application users during cloud service usage.

Architectural Solution:

Application users (clients) generally interact with services by setting up a secure
session (which can provide both confidentiality and integrity) with application
(service) instances (e.g., Web server or DBMS server instances). The most common
technology employed is the Transport Layer Security (TLS) protocol. TLS, just
like SSH described earlier, can be used to enable the service instance and client
to authenticate each other using a cryptographic means (as described in Internet
RFC 5246), as well as to set up secure session keys for encrypting/decrypting and
for generating message authentication codes.

Key Management Challenges:

The secure session requires the presence of an asymmetric key pair (private and
public keys) for a service instance and an optional key pair on the client side, as
well. The client-side private key can be managed by an enterprise key management
system, and the server-side private key has to be managed by a key management
system run by the IaaS cloud Provider.

IaaS-SCS The ability to securely store static application support data securely.

Architectural Solution:

To support applications running on leased VM instances, IaaS cloud Consumers
need secure storage services to store relatively static data such as application source
codes, reference data used by applications, preferred VM Images and archived
data and Logs. These types of data are different from data generated, processed
and stored directly by the application. To store the former type of data, the cloud
Providers offer a file-storage service.

Key Management Challenge:

The data that is not processed by or written to by applications can be encrypted at
the cloud Consumer site before being uploaded to the cloud Providers file storage
service. Hence, encryption keys (generally, symmetric keys) needed for encrypting
the data at the cloud Consumer site and are under its administrative control and can
thus be secured using enterprise key management solutions.

I1aaS-SC6 The ability to securely store application data in a structured form
securely: To store structured data generated by applications running on its VM
instances, the IaaS cloud Consumer needs to subscribe to a Database service
(generally a relational service offered by the Provider as an adjunct to its IaaS
offering). The cloud Consumer subscribing to this service is generally provided with
a DBMS instance with the ability to custom configure the instance to suit its business

Cryptographic Key Management Issues and Challenges in Cloud Services 21

and security needs. The options available to provide confidentiality protection for
data managed by the DBMS instance and the associated key management challenge
are described below:

Architectural Solution-TDE: (Transparent/External Encryption):

Use the native encryption function that is provided as a feature within the DBMS
engine or use a third party tool. This feature is called Transparent Data Encryption
(TDE) and is a technique similar to storage-level encryption (the encryption engine
operates at the I/O level and encrypts data just prior to being written to disk).
The whole database is protected with a single Database Encryption Key (DEK)
that is itself protected by more complex means, including the possibility of using a
Hardware Security Module (HSM). Since TDE performs all cryptographic operation
at the I/O level within the database system, there is no need to modify the application
logic or the database schema.

Key Management Challenge:

Since the IaaS cloud Consumer has administrative control of the subscribed DBMS
instance, it has control over the DEK as well. Since encryption is taking place at the
I/0 level, the DEK has to reside close to the storage resources designated for storage
of the database data, and hence, the cloud Consumer has no other option other than
storing the DEK in the same cloud where the DBMS instance is running. Although
there are TDE implementations that offer column and table-level granularity for
encryption, the most common usage is for storage-level encryption, and hence, the
implementation cannot be configured to provide different set of encryption keys for
different users based on their permission set (or assigned role).

Architectural Solution-ULE: (Database Level Encryption or User-Level
Encryption)

Under this feature, users can choose to encrypt data at the column level, table level
or even a set of data files corresponding to multiple tables or indexes.

Key Management Challenge:

This solution requires the use of a different encryption key for different database
objects. An additional service is required (e.g., by a Security Server) that will map
the set of session permissions of the user (based on the roles assumed) to the set of
keys, and then make a call to a KMS to retrieve the required set of keys from key
storage. For better security, the security server, the KMS and (persistent) key storage
should be run in a cloud that is different than the DBMS instance or should be run
on-premise by the cloud Consumer. The security server and KMS perform the role-
to-key mapping and key retrieval functions, respectively, based on the authenticated
credentials of the DBMS user. However, during a user’s session (for key usage),
the keys remain in a cache of the memory space created for the user session in the
same cloud as the DBMS instance. The added challenge of retrieving the key from
the KMS and providing it securely to the application running in the cloud Provider
space also needs to be dealt with. One can argue that once the secure session with
the DBMS application in the cloud is established, this security challenge is trivial.
Alternatively, the cloud Consumer can run the security server and the KMS in the

22 R. Chandramouli et al.

same cloud as the DBMS application. This latter approach leaves the sensitive data
vulnerable to access by the cloud Provider Administrators unless additional security
measures are taken.

I1aaS-SC7 The ability to store unstructured application data securely: This oper-
ation requires storage-level encryption similar to Transparent/External encryption
(Architectural Solution-1: (Transparent/External Encryption), and hence, the
same key management challenges apply.

4.2 Challenges in Cryptographic Operations and Key
Management for PaaS

The objective of a Platform as a Service (PaaS) offering is to provide a computa-
tional platform and the necessary set of application development tools to Consumers
for developing or deploying applications. Although the underlying OS platform on
which the development tools are hosted is known to the Consumer, the Consumer
does not have control over its configuration functions and thus the resulting
operating environment. Consumers interact with these tools (and associated data,
such as development libraries) to develop custom applications. Consumers may also
need a storage infrastructure to store both supporting data and application data for
testing the application functionality. PaaS cloud service security capabilities (SC)
that enable these operations are:

* PaaS-SC1: The ability to set up secure interaction with deployed applications
and/or development tool instances,

* PaaS-SC2: The ability to securely store static data (data not directly processed
by applications),

e PaaS-SC3: The ability to securely store application data in a structured form
(e.g., relational form) using a Database Management System (DBMS), and

« PaaS-SC4: The ability to securely store application data that is unstructured.

The operations involved in exercising the above capabilities (PaaS-SC1 through
PaaS-SC4) are identical to the operations involved in exercising capabilities IaaS-
SC4 through IaaS-SC7, respectively and hence, the same cryptographic key man-
agement challenges apply.

4.3 Challenges in Cryptographic Operations and Key
Management for SaaS

SaaS offerings provide access to applications hosted by the cloud Provider. An SaaS
cloud Consumer would like to interact with these application instances securely
(through setting up secure sessions and strong authentication) and exercise the

Cryptographic Key Management Issues and Challenges in Cloud Services 23

various application features, depending upon the set of assigned permissions or
by assuming their assigned roles (which provide the permissions). In addition,
some SaaS Consumers would also like to store the data generated/processed by
those applications in an encrypted form because of the following reasons: (a) to
prevent exposure of their corporate data, due to loss of the media used by cloud
Providers; and (b) surreptitious viewing of their data by an SaaS co-tenant or by
a cloud Provider administrator. Though the former feature (secure interaction with
application) is provided by the SaaS Providers, the second feature (storing data in
an encrypted form) currently has to be provided entirely by the SaaS Consumer. The
typical set of security capabilities (whether provided by an SaaS service or not) are:

* SaaS-SC1: The ability to set up secure interaction with an application, and
* SaaS-SC2: The ability to store application data (structured or unstructured) in an
encrypted form.

The operations involved in exercising the SaaS-SC1 capability is identical to
the operations involved in exercising the IaaS-SC4 capability, and hence, the same
cryptographic key management challenges apply.

SaaS-SC2 The ability to store application data (structured or unstructured) in an
encrypted form.

There are two operational scenarios here. If all fields in the database need to be
encrypted, then the encryption capabilities have to reside with the cloud Provider
because of the sheer scale of operation (see Architectural Solution — DVE below for
description). On the other hand, if each cloud Consumer wants selective encryption
of some subset of fields, and since that subset varies with each Customer, all
encryption operations has to take place at the client (cloud Consumer) end (see
Architectural Solution — GTE). The key management challenges for each of the
two options are discussed below after a brief description of associated architectural
solution.

Architectural Solution-DVE (Encryption of Entire Database):

For efficient encryption and storage of application data, SaaS cloud Providers divide
the physical storage resources into logical storage chunks called disk volumes and
assign different encryption keys over sets of disk volumes (e.g., assign an encryption
key for two or three disk volumes).

Key Management Challenge:

Since all the encryption keys are under the control of the SaaS cloud Provider,
this architectural solution does not provide assurance to the Consumer against
the insider’ threat unless additional measures are taken. Secondly, it is possible
that data belonging to different Consumers reside on a single disk volume and is
protected by a common encryption key, providing no cryptographic separation of
the data belonging to different cloud Consumers. Furthermore, the sheer volume

3That is, cloud Provider Administrator.

24 R. Chandramouli et al.

of data stored in large SaaS cloud offerings requires a large number of keys, thus
necessitating the need for the management of hundreds of symmetric encryption
keys, possibly using multiple key management servers. If the key management
function is carried out using an HSM, then it may require the creation and
maintenance of multiple HSM partitions.

Architectural Solution-GTE (Selective Encryption of Database Fields):

For selective encryption of certain set of fields chosen by the Consumer (the
selection of the set based on each Consumer’s business requirements), an encryption
gateway (generally running as an appliance) is usually employed inside the cloud
Consumer’s enterprise network. Architecturally, the gateway is located between
the SaaS client application and SaaS cloud application (hosted by cloud SaaS
Provider) and acts as a reverse proxy server that monitors all incoming and outgoing
application traffic (e.g., HTTP, SMTP, SOAP and REST). The outgoing payload
in this context will usually be the data that needs to be sent to the SaaS cloud
application for storage. The gateway being configured with rules for encrypting
different data items, encrypts or tokenizes the data in real time and forwards the
modified data to the SaaS cloud application. Similarly, encrypted or tokenized
data retrieved and returned by the SaaS cloud application is converted again, in
real time, into clear text prior to being displayed by the SaaS client application.
This encryption scheme thus requires no change either to the SaaS cloud Provider
application or to the SaaS cloud Consumer’s client application. Furthermore, all
application functionality can be exercised normally since the encryption/decryption
process performed by the encryption gateway is Format and Function-Preserving.
Thus, the encryption gateway is the solution adopted under the following scenario:

* The SaaS cloud Consumer needs selective encryption of certain fields and hence
all the processing (from the application functionality point of view) as well as
encryption of those fields occurs at the Consumer side and the DBMS instance
at the cloud is used just for storage (as opposed to computational processing) as
far as those fields are concerned.

* The values in fields marked for encryption thus are in encrypted form at all times
in the cloud (both during application processing in the cloud and storage in the
cloud)

* Data in clear text is visible only to authorized clients using SaaS client applica-
tion to interact with the SaaS cloud application through the encryption gateway

Key Management Challenge:

The encryption gateway may use a single key or different cryptographic keys for
encrypting/decrypting different selected fields of the application. Irrespective of the
number of cryptographic keys used, since the encryption gateway resides within
the enterprise network perimeter, all cryptographic keys are fully under the control
of the SaaS cloud Consumer and hence protected using in-house enterprise key
management policies and practices.

Cryptographic Key Management Issues and Challenges in Cloud Services 25

Appendix A: Security Analysis of Cryptographic Techniques
for Authenticating VM Templates in the Cloud

When leasing VMs from cloud Providers, cloud Consumers are concerned that the
VM templates being checked out might not be authentic. To mitigate this concern,
the following are some possible techniques:

. A Digital Signature on the VM template,

. The use of a Cryptographic Hash function,

. The use of a Keyed Message Authentication Code, or

. The use of cloud Provider Environment Discretionary Access Control.

RS S

Each of these techniques is described and analyzed below. Note that there are
numerous variations for each technique and several other techniques, but these
techniques were chosen to illustrate how to go about performing security analysis.
Also note that, based on the cloud computing paradigm, it is assumed that the cloud
Consumer will not download the VM template for authentication in the Consumer’s
Enterprise environment. Rather, the authentication will be performed in the Provider
environment in which the VM is going to execute.

A.1 VM Template Authentication Using Digital Signature

As Fig. A.1, illustrates, the cloud Provider signs the VM template using the cloud
Provider’s private key once the VM template has been created. The signing function
needs to be performed only once when the VM template is created.

Every time that a cloud Consumer checks out a VM template, he can verify the
digital signature on the VM template using the public key of the cloud Provider. The
cloud Consumer supplies the public key to the verification engine as illustrated in
Fig. A.1.

This approach has the advantage that the cloud Provider is able to create and
modify multiple VM templates, and all cloud Consumers can verify the source
and integrity of the VM template via a digital signature verification. It also has
the advantage of simplified key management. All that is required are the following:
(a) the cloud Provider needs to create a single public/private signature key pair and
protect the private key from unauthorized use and from unauthorized disclosure, (b)
the cloud Provider needs to provide the public key in a trusted manner! to each
cloud Consumer; and (c) the cloud Consumer needs to protect the public key from
undetected, unauthorized modification.

The approach has some disadvantages as well. While on the surface, the approach
seems highly secure, there are several security concerns with it:

IThis can be easily accommodated using physical means during contract signing.

26 R. Chandramouli et al.

Verification
Engine

+»

VM, Signature

4
|

Cloud Consumer

—={ Signing Engine

A

Private Key
Cloud Provider

Public Key '

Fig. A.1 VM template authentication using digital signatures

1. First of all, how does the cloud Consumer communicate securely with the
verification engine to provide the public key and to obtain the verification results.
Let us assume that the cloud Consumer can establish a secure session using TLS
or SSH.

2. Then the question becomes: how does the cloud Consumer trust the verification
engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template signature verification.

3. Furthermore, whatever means the cloud Consumer uses to establish trust in the
verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

A.2 VM Template Authentication Using Cryptographic
Hash Function

Another technique of assuring the integrity of the VM template is by using a
cryptographic hash function, such as SHA-256, to compute a hash value on the VM
template, and the Consumers obtaining the hash value using an out-of-band means
as illustrated in Fig. A.2.

Cryptographic Key Management Issues and Challenges in Cloud Services 27

Verification
Engine

L

VM

v

Hashing Engine

Fig. A.2 VM template authentication using cryptographic hash

The approach has the advantage of requiring no key management. However, the

hash value of the VM template needs to be provided to the consumers using means
that assure its integrity and source (e.g., physically). The cloud Consumer provides
this hash value for comparison during VM template authentication.

The approach has several disadvantages. Some of the disadvantages are common

to those for digital signatures:

1.

2.

This approach has the limitation that each time the VM template’ is modified, a
new hash value needs to be promulgated using a secure, out-of-band means.
The approach has the limitation that each VM template hash value needs to be
promulgated using secure, out-of-band means. One can assume that the cloud
will have multiple VM templates.

. Just like the digital signature, this approach does not solve the problem of the

cloud Consumer communicating securely with the verification engine to provide
the hash value and obtaining the verification results. Let us assume that the cloud
Consumer can establish a secure session using TLS or SSH.

. Then the question becomes: how does the cloud Consumer trust the verification

engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template verification.

. Furthermore, whatever means the cloud Consumer uses to establish trust in the

verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

28 R. Chandramouli et al.

A.3 VM Template Authentication Using Message
Authentication Code (MAC)

As illustrated in Fig. A.3, another approach is to use a MAC. A MAC is calculated
using a cryptographic function, such as a keyed hash function or a mode of operation
for a symmetric block cipher algorithm, that produces a message authentication code
using a secret shared by the Provider and the Consumers.

The approach has the advantage of the cloud Provider being able to create and
modify multiple VM templates and all cloud Consumers being able to verify the
source and integrity of the VM template via MAC verification. It also has the
advantage of simplified key management. All that is required are the following:
(a) the cloud Provider needs to create a single secret key and protect it from
unauthorized use and from unauthorized disclosure; (b) the cloud Provider needs
to provide to each cloud Consumer with the secret key in a secure manner?; and (c)
the cloud Consumer needs to protect the secret key from unauthorized disclosure.

The approach has several disadvantages. Some of the disadvantages are common
to those for using digital signatures:

1. Unless the secret key is unique per Consumer, this approach is vulnerable to one
Consumer modifying a VM template to compromise another Consumer. Having
unique keys for each Consumer will increase a cloud Provider’s key management
challenge

Verification
Engine

*

VM, MAC

Cloud Consumer

Engine

Secret Key
Cloud Provider

Fig. A.3 VM template authentication using MAC

2This can be easily accommodated using physical means during contract signing.

Cryptographic Key Management Issues and Challenges in Cloud Services 29

2. Just like the use of a digital signature, this approach does not solve the problem
of the cloud Consumer communicating securely with the verification engine to
provide the secret key and to obtain the verification results. Let us assume that
the cloud Consumer can establish a secure session using TLS or SSH.

3. Then the question becomes: how does the cloud Consumer trust the verification
engine running in the cloud Provider. If the cloud Consumer cannot trust or
authenticate the verification engine, it has no basis to trust the response from
the verification engine regarding the VM template authentication.

4. Furthermore, whatever means the cloud Consumer uses to establish trust in the
verification engine, why not use the same means to trust the VM template and
forego the extra step of having to first establish trust in the verification engine?

A.4 VM Template Authentication Based on Cloud Provider
Discretionary Access Control

Under this approach Consumers obtain the VM template from a location that can
be modified by the Provider only (i.e., the VM template is protected using discre-
tionary access controls). Though this form of authentication is not a cryptographic
technique, we have included this for completeness as a possible approach for VM
template authentication.

A.5 Conclusion

In conclusion, one can see from our higher-level security analysis of the possible
cryptographic techniques for authenticating VM templates, that none of them solve
the twin problem of establishing trust in the VM template, as well as in the verifica-
tion engine. Hence, our suggested solution for VM template authentication is:

1. The cloud Consumer should use SSL or SSH to establish a secure session with
the VM template integrity verification engine.

2. The application instance housing the VM integrity verification engine needs to
be configured to run as a secure appliance on a specially hardened VM. The
verification engine should also include appropriate public keys, secret keys,
and/or hash values, depending on the VM template authentication technique
chosen by the cloud Provider. Note that this approach obviates the need for a
secure, out-of-band channel between the cloud Provider and the cloud Consumer.
This approach also allows the cloud Provider to change keys, algorithms,
authentication method and/or a VM template without having a secure, out-of-
band channel with the cloud Consumer. Note that a cloud Provider may use
different cryptographic techniques (digital signatures, cryptographic hash, or
MAC) to protect different VM templates.

30

R. Chandramouli et al.

3. The cloud Consumer should check out any VM template, and authenticate the

VM template and launch the VM.

The advantage of having a verification engine as opposed to having a VM

template under discretionary access control is the added flexibility for the cloud
Provider to only secure the verification engine using discretionary access control, as
opposed to a myriad of VM templates.

References

1.

—_
O O >

11.

12.

F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, NIST Cloud Computing
Reference Architecture (NIST SP 500-292), National Institute of Standards and Technology,
U.S. Department of Commerce (2011). http://www.nist.gov/customcf/get_pdf.cfm?pub_id=
909505

. P. Mell and T. Grance, The NIST definition of cloud computing (NIST SP 800-145), National

Institute of Standards and Technology, U.S. Department of Commerce (2011) http://csrc.nist.
gov/publications/nistpubs/800-145/SP800-145.pdf

. L. Badger, D. Berstein, R. Bohn, F. de Valux, M. Hogan, J. Mao, J. Messina, K. Mills, A. Sokol,

J. Tong, F. Whiteside, and D. Leaf, US government cloud computing technology roadmap
volume 1: High-priority requirements to further USG agency cloud computing adoption (NIST
SP 500-293, Vol. 1), National Institute of Standards and Technology, U.S. Department of
Commerce (2011). http://www.nist.gov/itl/cloud/upload/SP_500_293_volumel-2.pdf

. L. Badger, R. Bohn, S. Chu, M. Hogan, F. Liu, V. Kaufmann, J. Mao, J. Messina, K. Mills,

A. Sokol, J. Tong, F. Whiteside, and D. Leaf, US government cloud computing technology
roadmap volume II: Useful information for cloud adopters (NIST SP 500-293, Vol. 2), National
Institute of Standards and Technology, U.S. Department of Commerce (2011). http://www.nist.
gov/itl/cloud/upload/SP_500_293_volumell.pdf.

. L. Badger, T. Grance, R. Patt-Corner, and J. Voas, Cloud Computing Synopsis and Recommen-

dations (NIST SP 800-146), National Institute of Standards and Technology, U.S. Department
of Commerce (2012). http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

. W. Jansen and T. Grance, Guidelines on Security and Privacy in Public Cloud Computing

(NIST SP 800-144). National Institute of Standards and Technology, U.S. Department of
Commerce (2011). http://csrc.nist.gov/publications/nistpubs/800- 144/SP800- 144.pdf.

. Secure Shell (SSH) Transport Layer Protocol, http://www.ietf.org/rfc/rfc4253.txt

. The Transport Layer Security (TLS) Protocol Version 1.2, http://tools.ietf.org/html/rfc5246

. Internet Security Glossary, Version 2, http://tools.ietf.org/rfc/rfc4949.txt

. EBracci, A.Corradi and L.Foschini, Database Security Management for Healthcare SaaS in the

Amazon AWS Cloud, IEEE Computer, 2012.

Understanding and Selecting a Database Encryption or Tokenization Solution, http://securosis.
com

Best Practices in Securing Your Customer Data in Salesforce, Force.com, and Chatter, http://
www.ciphercloud.com

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeII.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeII.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
http://www.ietf.org/rfc/rfc4253.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/rfc/rfc4949.txt
http://securosis.com
http://securosis.com
http://www.ciphercloud.com
http://www.ciphercloud.com

Costs and Security in Clouds

Yao Chen and Radu Sion

Abstract Cloud computing has emerged as an important paradigm for deploying
services and applications for both enterprises and end-users. In this chapter, we
explore two important aspects of cloud computing — costs and security. We aim to
answer two questions: (1) Is cloud computing a cost effective endeavor? (2) How
much security can we afford in the cloud while maintaining the cost benefits of
outsourcing?

To answer these questions, we start by looking at the economics of computing
in general and clouds in particular. Specifically, we derive the end-to-end cost of a
CPU cycle in various environments and show that its cost lies between 0.5 picocents
in efficient clouds and nearly 27 picocents for small enterprises (1 picocent =
$1 x 10~'%), values validated against current cloud pricing. We show that cloud
computing makes sense only in scenarios when the clients distance can be offset by
a minimal application computation footprint. We then explore the cost of common
cryptography primitives as well as the viability of their deployment for cloud
security purposes. It turns out that securing outsourced data and computation against
untrusted clouds is often costlier than the associated savings, with outsourcing
mechanisms up to several orders of magnitudes costlier than their non-outsourced
locally run alternatives.

1 Introduction

As computing becomes embedded in the very fabric of our society, the exponential
growth and advances in cheap, high-speed communication allow for unprecedented
levels of global information exchange and interaction. As a result, new market forces

Y. Chen (>4) * R. Sion

Network Security and Applied Cryptography Lab, Stony Brook University,
Stony Brook, NY, USA

e-mail: yaochen@cs.stonybrook.edu; sion@cs.stonybrook.edu

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8_2, 31
© Springer Science+Business Media New York 2014

mailto:yaochen@cs.stonybrook.edu
mailto:sion@cs.stonybrook.edu

32 Y. Chen and R. Sion

emerge that propel toward a fundamental, cost-efficient paradigm shift in the way
computing is deployed and delivered: computing outsourcing.

Computing outsourcing provides great elasticity and scalability of resources.
It minimizes client-side management overheads and benefit from a service
provider’s global expertise consolidation and bulk pricing, and helps users avoid
the capital expense in acquiring computing resources. The past decades’ traditional
outsourcing paradigms have usually involved established service providers such as
IBM that manage or host clients’ machines in dedicated data centers. More recently,
first storage and then computation outsourcing has been commoditized through the
emergence of globally-sized enterprises such as Google, Yahoo, Amazon, and Sun
which started offering increasingly complex storage and computation outsourcing
“cloud” services. CPU cycles have become consumer merchandise.

So far, the end-to-end viability of cloud computing has mostly not been explored.
Is a remotely hosted computing cycle in a cloud indeed cheaper than performing it
locally when considering the end-to-end bottom-line? It seems the markets have
spoken and the increasing number of service providers can be viewed as testimony
that this indeed is the case. Yet by what margins? And what are the features of
suitable applications for cloud deployment? As the migration from in-house data
centers to the clouds is non-trivial and fraught with potentially large costs, asking
these questions is essential.

In this chapter, to understand the viability of clouds, we provide a cost model for
computing in different environments and derive the dollar cost of primitives such as
CPU cycles, storage and network transfers. Using the model, we then evaluate cloud
outsourcing end-to-end and derive a threshold principle defining when outsourcing
indeed is economically viable, i.e., when computing-related savings outweigh the
costs of networking. We then evaluate the footprints and types of applications most
suited for cloud deployment.

Despite the associated buzz, clouds have been somewhat less successful in
attracting medium to large size corporations. Such clients often fall under strict
regulatory compliance requirements for manipulating information or simply are
reluctant to place sensitive data and computation logic under the control of a remote,
third-party provider, without practical assurances of privacy and confidentiality in
which the provider is un-trusted. Significant challenges lie in the path of successful
large-scale adoption.

To address this, existing secure outsourcing research addressed several issues
including guaranteeing integrity, confidentiality and privacy of outsourced data to
secure querying on outsourced encrypted database. Such assurances will likely
require strong cryptography as part of elaborate intra- and client-cloud protocols.
Yet, strong crypto is expensive. Thus, it is important to ask: how much cryptography
can we afford in the cloud while maintaining the cost benefits of outsourcing?

Some believe the answer is simply none. For example, in an interview [56]
Whitfield Diffie argued that “current techniques would more than undo the
economy [of] outsourcing and show little sign of becoming practical.”

Here we set out to find out whether this holds and if so, by what margins. One
way to look at this is in terms of CPU cycles. For each desired un-secured client CPU

Costs and Security in Clouds 33

cycle, how many additional cloud cycles can we spend on cryptography, before its
outsourcing becomes too expensive? We end up gaining the insight that today’s
secure data outsourcing primitives are often orders of magnitude more expensive
than local execution, mainly due to the fact that we do not know how to process
complex functions on encrypted data efficiently enough. And outsourcing simple
operations — such as existing research in querying encrypted data, keyword searches,
selections, projections, and simple aggregates — is simply not profitable. Thus,
while traditional security mechanisms allow the elegant handling of inter-client and
outside adversaries, today it is still too costly to secure against cloud insiders with

cryptography.

2 Cost Models

To reach the granularity of compute cycles we explore the cost of running
computing at different levels. We chose environments of increasing size: home,
small enterprises, mid-size enterprises and large size data centers. The boundaries
between these setups are often dynamic and the main reason we’re using them is to
help differentiate a set of key parameters.!

2.1 Levels

Home Users (H). We include this scenario as a baseline for a simple home setup
containing several computers. This could correspond to individuals with spare time
to maintain a small set of computers, or a very small home-based enterprise with
no staffing overheads. It is important to consider this scenario as it represents a
potentially large slice of the outsourcing market, especially through application
such as mail, document, media and personal blog/web hosting. Also this niche is
important as it features a set of peculiarities, including access to residential energy
pricing, negligible cooling, rental and management costs (as we will not factor
individuals’ time in).

Small Enterprises (S). We consider here any scenario involving an infrastructure
of up to 1,000 servers run in-house in a commercial enterprise. The cost structure
will start to feature most of the usual suspects, including commercial energy and
network pricing, cooling, space leases, staffing etc. Small enterprises however
can not afford custom hardware, efficient power-distribution, and cooling or ded-
icated buildings among others. More importantly, in addition to power distribution

'We note it is not the subject of our work to explore in-depth data center infrastructures. A plethora
of online sources discuss issues related to data centers, often focusing on power and overall
efficiency (most notably James Hamilton’s blog [27]).

34 Y. Chen and R. Sion

inefficiencies, due to their nature, small enterprises cannot be run at high utilization
as they would be usually under the incidence of business cycles and its associated
peak loads.

Mid-size Enterprises (M). We consider here setups of up to 10,000 servers, run
by a corporation, often in its own dedicated data center(s). Mid-size enterprises
might have some clout and access to better service deals for network service as
well as more efficient cooling and power distribution. They are not fully global,
yet could feature several centers across one or two time zones, allowing increased
independence from local load cycles as well as the ability to handle daily peaks
better by shifting loads across timezones. All the above results ultimately in
increased utilization (20-25 % est.) and overall efficiency.

Large Enterprises/Clouds (L). Clouds and large enterprises run over 10,000
servers, cross multiple time-zones, often literally at a global level, with large
data centers distributed across all continents and often in tens to hundreds of
countries. For example Google has built a 30-acre site in Dalles, Oregon, next to
a hydroelectric dam providing cheap power. The site is composed of 34,000 sqft
buildings [33]. Especially in cloud setups, high speed networks allow global-wide
distribution and integration of load from thousands of individual points of load. This
in turn flattens the 24-h overall load curve and allows for efficient peak handling
and comparably high utilization factors (50-60 % est. [28]). Cloud providers run the
most efficient infrastructures, and often are at the forefront of innovation. Moreover,
clouds have access to bulk-pricing for network service from large ISPs, often one
order of magnitude cheaper than mid-size enterprises.

2.2 Factors

We now consider the cost factors that come into play across all of the above levels.
These can be divided into a set of inter-dependent vectors, including: hardware
(servers, networking gear), building (floor space leasing), energy (running hardware
and cooling), service (administration, staffing, software maintenance), and network
service. Other breakdown layouts of these factors are possible.

Server Hardware. Hardware costs include servers, racks, power equipment, net-
work equipment, cooling equipment etc. We will discuss network equipment
later. Naturally, there are different choices for data centers to increase capacity.
Up-scaling — the purchase of a smaller number of more expensive off-the-shelf
multi-blade servers — is often considered in mid-size enterprises, and features
lower software and infrastructure cost advantages. Scaling out — deploying massive
numbers of low-cost, almost “expendable” custom-designed and often in-house built
multi-CPU server boards — is a strategy available to large, cloud-size providers such
as Google and Amazon. The advantages of this approach are low hardware costs,
low inter-failure correlation and high overall efficiency factors. Sometimes these

Costs and Security in Clouds 35

two approaches can be combined; e.g., servers embedded with 4-8 CPUs can be
considered as scale-out architecture of scale-up nodes [25]. We note that these costs
drop with time, likely even by the time this goes to print. For example, while many
of the current documented mid-size deployments use single or multi-CPU System-
X blade servers at around $1-2,000 each [32], large data centers deploy custom
setups at about $3,000 for 4 CPUs, near-future developments could yield important
changes.> We will be conservative and empirically assume home PC prices of
around $750/CPU, small and mid-size enterprise costs of around $1,000/CPU (for
2 CPU blades) and cloud-level costs of no more than $500/CPU.

Energy. Energy in data centers does not only include power, computing and net-
working hardware but the entire support infrastructure, including cooling, physical
security, and overall facilities. With the increasing density of today’s rack structure,
temperature rises more rapidly than in old server rooms [7]. For example, any
additional 40 W/sqft can lead to a rise of 25°F in 10min. A simple rough way
to infer power costs is by estimating the Power Usage Efficiency (PUE) of the data
center. The PUE is a metric to evaluate the energy efficiency of a data center [24]
(PUE = Total Power Usage/IT Equipment Power Usage). PUE ranges from 1.13 to
1.21 for big providers as claimed by Google, Facebook and 1.22 for efficient data
center containers, to over 2 for typical data centers [44,51]. We will assume 1.2—1.5
PUE for large enterprises, 1.6-2 PUE for mid-size enterprises and 2-2.5 for small
enterprises [44]. Costs of electricity are relatively uniform and documented [23].

Service. Evaluating the staffing requirements for data centers is an extremely com-
plex endeavor as it involves a number of components such as software development
and management, hardware repair, maintenance of cooling, building, network and
power services.

Analytical approaches are challenged by the sparsity of available relevant
supporting data sets. We deployed a set of commonly accepted rule of thumb
values that have been empirically developed and validate well [29]: the server to
administrator ratio varies from 2:1 up to experimental 2,500:1 values due to different
degrees of automation and data management. In deployment, small to mid-size data
centers feature a ratio of 100—140:1 whereas cloud level centers can go up to 1,000:1
[23,28].

Network Hardware. To allow for analysis of network intensive protocols, we
chose to separate network transport service costs from the other factors of impact in
the bottom line for CPU cycle. Specifically, while the internal network infrastructure
costs will be factored in the data center costs, network service will not. We will
estimate separately the cost of transferring a bit reliably to/from the data center
intermediated by outside ISPs’ networks. Internal network infrastructure costs can
be estimated by evaluating the number of required switches and routers. The design

2In one documented instance, e.g., Amazon is working with Rackable Systems to deliver an under
$700 AMD-based 6 CPU board dubbed CEMS (Cooperative Expendable Micro-Slice Servers) V3.

36 Y. Chen and R. Sion

of scalable large economy network topology with high inter-node bandwidth for
data centers is an ever ongoing research problem [45]. We base our results on some
of the latest state of the art research, deploying fat tree interconnect structures. Fat
trees have been shown to offer significantly lower overall hardware costs with good
overall connectivity factors. For example inter-connecting a 27,648 node cluster
with Ethernet switching can be done for under $8.64 million [45], assuming $3,000
48-port GigE switches at the edge, aggregation and core layers.

Floor Space. Floor space costs vary wildly, by location and use. While office space
can be had for up to tens of dollars/sqft/month in Manhattan, data center space can
be had at much lower rates, being as low as $0.1/sqft/month [15,16,48]. While small
to mid-size enterprises usually have data centers near their location (thus sometimes
incurring office-level pricing), large companies such as Google and Microsoft tend
to build data centers on owned land, in less populated place where the per sqft price
can be brought down much lower, often amortized to zero over time.

We also note that floor surface is directly related to power consumption and
cooling with designs supporting anywhere from 40 to 250 W/sqft [21]. Thus, the
overall power requirements (driven by CPUs) impact directly the required floor
space.

3 Cost Primitives

Armed with knowledge of the above factors, we now estimate the cost of basic
computing primitives.

3.1 CPU Cycles

We start by evaluating the amortized dollar cost of a CPU cycle in Eq. (1). See
notations in Table 1 and various setups’ parameters in Table 2.

Table 1 Notations for

Eq. (1) Symbol Definition
Ng, N, Number of servers, switches
o administrator: server ratio
B W/sqft
sy A Server, switch price
Ap, Ay Personnel, floor cost per second
Ae Electricity price/(W-s)
u CPU utilization
\4 CPU frequency
Tsy Ty Servers, switches lifespan (5 years)

Wy, Wi Server power at peak, idle

Costs and Security in Clouds 37
Table 2 Sample key parameters
Parameters Home Small Medium Large
CPU utilization 5-8 % 10-12 % 15-20 % 40-56 %
server:admin ratio N.A. 100-140 140-200 800-1k
Space (sqft/month) N.A. $0.5 $0.5 $0.25
PUE N.A. 2-2.5 1.6-2 1.2-1.5
Table 3 Current pric'ings of Provider Picocents
a CPU cycle from major
cloud providers Amazon EC2 0.93-2.36
Google AppEngine Up to 2.31
Microsoft Azure Up to 1.96

CycleCost =

Server + Energy + Service + Network + F loor

Total Cycles

AN/t (v i (1= 0) - PUE Rt B Ay Ay Ny T o Ay DR bR

u

'V'NS

6]

The results are depicted in Fig. 1, costs ranging from 0.45 picocents/cycle in very
large cloud settings all the way to (S), the costliest environment, where a cycle costs
up to 27 picocents (I US picocent = $1 x 10714,

Fig. 1 CPU cycle costs

CPU cycle cost (picocent)

40
35
30
25
20
15

. 27

: 14

s

. 2
H g <05
10(H) 50(S) 500(S) SK(M) 100K(L)

Number of servers

We validate our results by exploring the pricing of the main cloud providers
(Table 3). The prices lie surprisingly close to each other and to our estimates,
ranging from 0.93 to 2.36 picocents/cycle. The difference in cost is due to the fact
that these points include not only CPUs but also intra-cloud networking, instance-
specific disk storage and cloud providers’ profit.

38 Y. Chen and R. Sion

Table 4 Summarized network service costs [28,49]

H, S M L

Monthly $44.90 $200 $95 $13
Bandwidth (d / u) 15/5 Mbps per Mbps per Mbps
Dedicated No Yes Yes Yes
Picocent/bit 115/345 >7,000 3,665 500
Table 5 Per bit transfer costs Settings Cost (picocent)

(H, S) — Cloud 900

(M) — Cloud 4,500

3.2 Network Service

Published numbers place network service costs for large data centers at around
$13/Mbps/month and for mid-size setups at $95/Mbps/month [28] for guaran-
teed bandwidth. Home user and small enterprise pricing usually benefits from
economies of scale and numbers are readily available, e.g., Optimum Online
provides 15/5 Mbps internet connection for small business starting at $44.9/month.
We note however that the quoted bandwidth is not guaranteed and refers only to
the hop connecting the client to the provider. However, if home users or small
enterprises were to order guaranteed network service, the price is much higher
(around $200/Mbps/month as quoted to us by network providers.). In this work,
we mainly consider non-guaranteed network services for home users and small
enterprises. We summarize these costs in Table 4.

The end-to-end cost of network transfer includes the cost on both communicating
parties and the CPU overheads of transferring a bit from one application layer to
another (a minimum about 20 CPU cycles per 32 bit data). Moreover, for reliable
networking (e.g., TCP/IP) we need to also factor in the additional traffic and spent
CPU cycles (e.g., SYN, SYN/ACK, ACK, for connection establishment, ACKs for
sent data, window management, routing, re-transmissions, etc.). If we assume a 1 %
TCP re-transmission rate, 1 ACK packet for every two data packets, it costs more
than 900 picocents to transfer 1 bit reliably in the S — L scenario. We summarize
the per bit transfer cost in other scenarios in Table 5.

Moreover, if the applications are not optimized to fully utilize payloads these
costs could be much higher, e.g., if only a 32 bit value payload is sent, it would
incur upwards of 10,000 picocents per bit.

3.3 Storage

Simply storing bits on disks has become truly cheap. Increased hardware reliability
(with mean time between failures rated routinely above a million hours even for
consumer markets) and economies of scale resulted in extreme drops in the costs of

Costs and Security in Clouds 39

disks. Table 6 shows the costs of ownership and operation of a representative sample
(by no means exhaustive) set of commonly available consumer-level disks (numbers
were obtained in November 2009 from numerous online sources, including the disk
vendors’ sites, price search engines and independent online hardware discussion
sites). Costs incorporate energy and amortized acquisition components. Energy
is dominating at 60-70 % of the total cost. We note that actual observed MTBF
are often up to about 3.4 times lower than advertised [53]. We considered this in
computing the values in Table 6.

In terms of amortized acquisition costs, the Seagate Barracuda provides the best
price/hardware/MTBF ratio at 7.67 picocents/bit/year. We observe that hardware
constitutes only a small percentage of the overall costs, e.g., for the Maxtor, the
amortized hardware acquisition being only 12.16 % of the overall ownership cost.
And it holds across all considered (H,S,M,L) levels due to the fact that the existence
of a critical mass of disk consumer level buyers results in economies of scale pricing
available for everybody.

This leads to the insight that, if storage power and maintenance has been already
factored in, then, for most scenarios direct storage hardware costs are very small
and can be mostly ignored when evaluating network and CPU intensive protocols.
Naturally this does not hold if the main costs include long-term data at rest with
little or no computation and networking. But, as soon as data gets transferred or
processed, direct storage costs become negligible.

4 To or Not To

The insights gained above in the costs of computation, network and storage enable
us to explore the viability of the outsourcing endeavor.

We start by noting that it is easy to find scenarios for which it does not make
sense to outsource to clouds from a strict cost-centric perspective. For example, the
CPU cycle costs in Fig. 1 immediately show that it is not profitable to outsource
personal workloads (H) to small (S) enterprises (we denote this H — S) as it would
naturally incur additional network bandwidth and CPU cycle costs are much higher
for (S).

Yet, what about the other options, {H - M, H - L,S—M,S— L, M — L}?

The answer in each of these cases is highly dependent on the type of applications
outsourced. Basically, there are three main services the cloud provides: storage,
networking and computation. The costs of these three primitives behave differently
across computing environments of different scale, thus their outsourcing costs are
different. Often the relation between these primitives in an application determines
its outsourcing saving. In the following, we explore applications of different types in
two outsourcing scenarios (single-client outsourcing and multi-client outsourcing).

Y. Chen and R. Sion

40

071 £€6'681 L8'6ST S6°0T 9097 S€0 €9 0SL 01°00ZL epnoeLeq djedeag

S8'LE £6'86 6¥'19 SLS SY'LE 620 €01 $T0T 1oMOd MO JD Telae) (M

8¢°LT £€°691 L6TCT 0S'TT 9¢'9% S€0 €51 $20T 000TSILY Jeisenyn yoeiH

€9°61 9T61¢ LE69T 0£7TI 68°6 620 L9 00S 00S3L Tersysa(T IyoeIH

91Tl 0S°0LT L€ S80T 68°C¢ S€0 €S 00S XeJ\ pUuoweI(JOIXeIN

%9by (1eakpiqauacooid) (1eak/11q/1ue0091d) (M) (eakpiqauecodrd) (smoy uorun) (A@sn) (D) 3s1q
1800 [e10], 1S00 JoMOoq Iomod ‘boe oty A9LIN PV QoLId dep

$1500 23e10)s NSIP ONAUSE]N 9 J[qBL

Costs and Security in Clouds 41
4.1 Single-Client Model

One of the simplest computation outsourcing scenarios involves clients shifting their
own CPU-intensive applications onto clouds, to save costs. Later these same clients
(or delegates thereof) will access these cloud-hosted applications for their own use.
An example of this are large corporations considering migrating in-house data
centers to clouds.

Naturally, this is feasible when the savings outweigh the outsourcing overhead
costs. In general, outsourcing a computation load from environment a to environ-
ment b is economically justified when

Savings = Cycles X ¢, — Cycles X ¢, — Trans,_, > 0

T
& Cycles > 2[AM%a b (2)
Cq—Cp

where Cycles is the number of CPU cycles needed per bit data, and c, denotes the
CPU cycle cost for environment X € {H,S,M,L}. We call this the first minimal
CPU-intensive requirement criterion (we will also call this the “first outsourcing
criterion”):

First outsourcing criterion:

For an application accessed mainly by clients in environment a, outsourcing it
from a to another environment b is economically justified iff. its computation
load exceeds % compute cycles per transferred input bit.

To illustrate, consider a 32 bit item in the § — L case. We know from
Sect. 3.2, that the cost of reliably transferring 32 bits can be anywhere 28,000 and
320,000 picocents depending on the nature of the connection and whether connec-
tion establishment costs are amortized across multiple sends. For consistency, we
disregard for now any application-specific costs, such as the existence of results and
their transfer costs. As a lower bound, we get

T
Cycles > ~52L ¢ (1,000, 12,000).
Cs —CL

In other words, if the task at hand requires anywhere less than 1,000 CPU cycles
(in the most optimized possible case) per 32 bits of input data, it is not profitable to
outsource from a home setting to a large cloud.

Moreover, 1,000 turns out to also be a lower bound across all outsourcing options
as can be seen in Fig.2. For H — L, we have anywhere between Cycles > 6,400

42 Y. Chen and R. Sion

Fig. 2 Cost savings of 1200 .
outsourcing per 32 bit data H to Cloud E
fromS—L H-—LM—L o 10007 S to Cloud e
with increasing application 5 800} M to Cloud i
computation load. The lower 8 §
bounds on the numbers of ‘B 600 ¢ .
CPU cycles needed to justify) 400 |
cloud outsourcing are 1,000, Eo
6,400, and 96,100 =200 ¢ 1
respectively % 0 . =

D b T :

1000 10000 100000

CPU cycles per 32bit data

and Cycles > 71,000. For M — L, due to the much higher network costs of (M),
32 bit transfers can cost anywhere between 144,000 and 1,615,000 picocents, which
results in anywhere between Cycles > 96,100 and Cycles > 1,070,000.

Applications which are well suited in such CPU-intensive outsourcing include
highly scientific computations [52], which usually consume large amounts of CPU.
We note that recently Mathworks seems to have tapped this niche, by adding a
parallel toolbox in Matlab which enables users to do parallel computing on the
Amazon Elastic Compute Cloud [3].

We note that the above minimal CPU-intensive requirement criterion specifically
refers to network costs that cannot be amortized over multiple transactions, hence
the wording “per transferred input bit”. Yet, often applications involve significant
amounts of already cloud-hosted data inputs, and in such cases, the criterion simply
refers to any data that is transferred to/from the cloud.

Simple Storage. Overall, the CPU-intensive requirement of the criterion suggests
that purely storage-centric applications are not good candidates for unified-client
outsourcing in the cloud. This indeed seems to hold for simple storage outsourcing
in which a single data customer places data remotely for future access. For the S — L
scenario, the amortized cost of storing a bit reliably either locally or remotely is
under 9 picocents/month (including power). Network transfer however, is at least
900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher than storing the data.

Thus, from a pure technological cost-centric point of view, it is simply not
effective to store data remotely. Depending on the application network footprint,
outsourced storage costs (incl. network transfer cost) can be upwards of 2+ orders
of magnitude higher than local storage. It’s worth noticing that cloud providers also
allow users to mail a portable storage device and upload the data to the cloud over
their local network [2]. Yet, as we discussed in Sect. 3.3, simple storage without
data processing has become truly cheap even for end users. Using clouds as remote
storage is not cost efficient.

Costs and Security in Clouds 43

Searchable Storage and Databases. Scenarios where outsourcing of data
becomes viable include any data processing mechanisms that allow the amortization
of networked data transfer over multiple queries to the data set.

Consider for example a searchable outsourced database of size n which allows
queries of certain search selectivity s (search results are of size n* s S,, where
S, is the size of a single result) to be submitted. In this case, the intuition dictates
that outsourcing is profitable for a CPU-intensive search process (e.g., for a large
database size) and a high selectivity (very low s). For illustration, if searching
involves a binary index (O(logn) CPU cycles), and a comparison takes Ceompare = 3
cycles, we have

Savings =1ogn X Ceompare X (Ca — Cp)
Costyrans = nsS,Trans,_.p,
and, for cost viability, we want
logn x Ceompare X (€a — ¢p) > nsBTrans,_p

logn x Ccompare X (Ca - Cb)

=S
nS,Trans,_.p

In the S — L scenario, for a database of n = 10° keywords and S, = 32 bits, this
results in s < 8.3 x 10711, And s will be even lower when database size grows.

4.2 Multi-Client Model

Yet, paradoxically, despite the above conclusion, storage outsourcing seems to be
thriving. Just recently, Smugmug, a paid digital photo sharing website, announced
$1M savings a year by outsourcing storage to Amazon S3 [1].

This can be explained as follows. The core storage costs coupled with the lack of
an intense-enough CPU load, indeed do not justify outsourcing for a unified client
scenario. Yet, web-based enterprises such as Smugmug, by their very nature provide
services to third party clients and thus also require mechanisms to handle their
clients’ remote access, e.g., through often CPU-intensive web interfaces supported
by web servers running on actual CPUs. This can increase the per-bit CPU footprint
significantly. Moreover, network service pricing for mid-size enterprises can be up
to one order of magnitude higher than for clouds, as can be seen in Table 4 — and in
effect, clouds can afford to also operate as an efficient content distribution (CDN)
service.

Overall, the case for cloud feasibility becomes more complicated in multi-client
scenarios. The outsourcing criterion needs to be updated as a function also of
the different network service deals of the two environments. Then, outsourcing is
economically tenable when

Cycles x c; — Cycles X cp+ (Trans.—s, — Trans._) > 0 3)

44 Y. Chen and R. Sion

where c is the environment from which the majority of client accesses are coming to
the outsourced application (Fig. 3). Then, the outsourcing criterion can be rewritten
into a more complete (“second outsourcing criterion”) form as follows:

Second outsourcing criterion:

For an application that resides in environment a, whose accesses come mainly
from clients in environment ¢, outsourcing it from a to another environment b
is economically justified iff.
. . Trans._p—Transc—q
its computation load exceeds —a—=, compute cycles per trans-
. . a
ferred input bit — for ¢, > ¢ and Trans.—,, ; TransCT_ﬂ,, or,
its computation footprint is lower than w compute cycles
. a
per transferred input bit — for ¢, < ¢, and Trans.—, > Trans._p

We can better understand Eq. (3) by detailing the following four cases:

(i) ¢4 > cpand Trans._,, > Trans._,p, in this case, savings are constantly positive,
yielding no CPU intensive requirement;
(i) ¢4 < ¢p and Trans.—, < Trans._,p, N0 savings can be achieved (constantly
negative);
(i) ¢4 > ¢p and Trans._,q < Trans._,p, then Cycles > %LTZMH‘
(iv) ¢4 < cp, and Trans._., > Trans._y, in this case, Cycles < %,
this unusual case corresponds to an upper bound on the amount of computation

an application can have before outsourcing becomes counter-productive;

We show in Fig. 3 the cost savings of S,M — L with different third party clients
and applications at different CPU intensive levels. The CPU intensive requirements
are much lower than in the single-client model. Note, given today’s cost points, M —
L is always profitable and falls into case (i). This may also explain the success of
Smugmug outsourcing to Amazon S3. Moreover, if S requires guaranteed network
service for the application (see numbers in Table 4), § — L also falls into case (i).

For completeness, the equation also covers cases when outsourcing occurs from
larger to smaller scale environments, as in (iv). One illustrative instance of this is a
large enterprise placing smaller data centers strategically closer to targeted clients.
Although CPU cycles will cost more in these smaller data centers, this kind of
outsourcing can effectively take advantage of its associated network proximity.

This illustrates another point of feasibility for clouds: content distribution for
applications with numerous (often geographically dispersed) clients. This is not only
profitable because of the better network service deals that clouds get from major
ISPs, but also due to their on-demand scalability promise etc., which is outside of
the scope of this chapter.

For multi-client applications such as content distribution or data processing,
it is important to consider also intra-cloud communication as well as the actual

Costs and Security in Clouds 45

Fig. 3 Illustration of the cost 300 :
savings of outsourcing per a=S,¢c=S
32 bit of data from a € {S, M} B0y a=S,c=M---"--
to b =L withc € {S,M} - g | =M,c=S
o . . o 200 B a

with increasing computation 2 a=M,c=M
load — according to Eq. (3) 'a 150 |
(corresponding to the second < Ly

e criteri 2 100 [> 1
outsourcing criterion). For 5 -
a=S5,c=S§, the CPU £ 5l]
intensive requirement is 3 LS
410 cycles per 32 bit 0 —

-50 v
1000 10000

CPU cycles per 32bit data

Table 7 Inter- and intra-cloud network transfer pricing (picocent)

Amazon Microsoft Google
Data-in 1,164 1,164 1,164
Data-out 1,979 1,746 1,396
First 10 TB/month
Next 40 TB/month 1,513 1,746 1,396
Next 100 TB/month 1,280 1,746 1,396
Next 150 TB/month 1,164 1,746 1,396
Intra-cloud/same region 0 0 0
Intra-cloud/inter-region 116 N/A N/A

profit-including pricing of bit transfers in/out of clouds. For example, at the time of
this writing, clouds charge 1,164 picocents per incoming bit, roughly double than
what they are paying to ISPs. Table 7 illustrates these pricing points.

5 Cryptography

So far we know that a CPU cycle will set us back 0.45-27 picocents, transferring
a bit costs at least 900 picocents, and storing it costs under 100 picocents/year. We
now explore the costs of basic crypto and modular arithmetic. All values are in
picocents. Note that CPU cycles needed in cryptographic operations often vary with
optimization algorithms and types of hardware used (e.g., specialized secure CPUs
and crypto accelerators with hardware RSA engines [4] are cheaper per cycle than
general-purpose CPUs).

Symmetric Key Crypto. We first evaluate the per-bit costs of AES-128, AES-
192, AES-256 and illustrate in Table 8. The evaluation is based on results from the
ECRYPT Benchmarking of Cryptographic Systems (eBACS) [9].

46 Y. Chen and R. Sion

Table 8 AES-128, AES-192, AES-256 costs (per byte) on 64-byte input

AES-128 AES-192 AES-256
S 1.42E + 03 1.48E +03 1.52E+ 03
L 2.37E 401 2.47E 401 2.53E4-01

Table 9 Cost of RSA encryption/decryption on 59-byte messages (pico-

cents)

1,024 bit 2,048 bit

Encrypt Decrypt Encrypt Decrypt
S 3.74E - 06 1.03E 408 8.99E +- 06 6.44E - 08
L 6.24E 4- 04 1.72E 4- 06 1.50E + 05 1.07E 4+ 07

Table 10 DSA on 59-byte messages. The 1,024-bit DSA uses 148-byte
secret key and 128-byte public key. The 2,048-bit DSA uses 276-byte
secret key and 256-byte public key

1,024 bit 2,048 bit

Sign Verify Sign Verify
S 5.73E407 6.94E + 07 1.89E + 08 2.30E+ 08
L 9.55E+05 1.16E 4 06 3.15E+ 06 3.84E 406

Table 11 Costs of ECDSA signatures on 59-byte messages (curve over a
field of size 2163, 2409 2571 respectively) (picocents)

ECDSA-163 ECDSA-409
KG/SGN Verify KG/SGN Verify
S 1.36E + 08 2.65E 408 9.60E + 08 1.91E+ 09
L 2.27E 406 4.41E+ 06 1.60E + 07 3.19E 407
ECDSA-571
KG/SGN Verify
S 2.09E - 09 4.18E+ 09
L 3.48E 407 6.96E +- 07

RSA. Numerous algorithms aim to improve the speed of RSA, mainly by reducing
the time to do modular multiplications. In Table 9, we illustrate the costs of RSA
encryption/decryption using benchmark results from [9].

PK Signatures. We illustrate costs of DSA, and ECDSA signatures based on NIST
elliptic curves [9] in Tables 10 and 11.

Cryptographic Hashes. We also show per byte cost of MD5 and SHA1 with varied
input sizes in Table 12.

Costs and Security in Clouds 47

Table 12 Per-byte cost of MD5 and SHA1 (with 64- and 4,096-byte

input)

MD5 SHA1

4,096 64 4,096 64
S 1.52E +02 3.75E +02 2.14E+02 6.44E + 02
L 2.53E+00 6.25E 400 3.56E + 00 1.07E + 01

6 Secure Outsourcing

Thus armed with an understanding of computation, storage, network and crypto
costs, we now ask whether securing cloud computing against insiders is a viable
endeavor.

We start by exploring what security means in this context. Naturally, the
traditional usual suspects need to be handled in any outsourcing environment:
(mutual) authentication, logic certification, inter-client isolation, network security
as well as general physical security. Yet, all of these issues are addressed extensively
in existing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will isolate the analysis from
the additional costs of software patching, peak provisioning for reliability, network
defenses etc.

6.1 Trust

We are concerned cloud clients being often reluctant to place sensitive data and
logic onto remote servers without guarantees of compliance to their security policies
[19, 35]. This is especially important in view of recent sub-poenas and other
security incidents involving cloud-hosted data [13, 14, 42]. The viability of the
cloud computing paradigm thus hinges directly on the issue of clients’ trust and
of major concern are cloud insiders. Yet how “trusted” are today’s clouds from this
perspective? We identify a set of scenarios.

Trusted clouds. In a trusted cloud, in the absence of unpredictable failures, clients
are served correctly, in accordance to an agreed upon service contract and the cloud
provider’s policies. No insiders act maliciously.

Untrusted clouds. For untrusted clouds, we distinguish several cases depending
on the types of illicit incentives existing for the cloud and the client policies with
which these will directly conflict. We call a cloud data-curious if insiders thereof
have incentives to violate confidentiality policies (mainly) for (sensitive) client
data. Similarly, in an access-curious cloud, insiders will aim to infer client access
patterns to data or reverse-engineer and understand outsourced computation logic.
A malicious cloud will focus mainly on (data and computation) integrity policies
and alter data or perform incorrect computation.

48 Y. Chen and R. Sion

Reasonable cloud insiders are likely to factor in the potential illicit gains (the
incentives to violate the policy), the penalty for getting caught, as well as the
probability of detection. Thus for most practical scenarios, insiders will engage in
such behavior only if they can get away undetected with high probability, e.g., when
no (cryptographic?) safeguards are in place to enable the detection.

6.2 Secure Outsourcing

Yet, millions of users embrace free web apps in an untrusted provider model. This
shows that today’s (mostly personal) cloud clients are willing to trade their privacy
for (free) service. This is not necessarily a bad thing, especially at this critical-mass
building stage, yet raises questions of clouds’ viability for commercial, regulatory-
compliant deployment, involving sensitive data and logic. And, from a bottom-line
cost-perspective, is it worth even trying? This is what we aim to understand here.

In the following we will assess whether clouds are economically tenable if
their users do not trust them and therefore must employ cryptography and
other mechanisms to protect their data. A number of experimental systems
and research efforts address the problem of outsourcing data to untrusted service
providers, including issues ranging from searching in remote encrypted data to
guaranteeing integrity and confidentiality to querying of outsourced data. In favor
of cloud computing, we will set our analysis in the most favorable S — L scenario,
which yields most CPU cycle savings.

6.3 The Case for Basic Outsourcing

Before we tackle cloud security, let us look at the simplest computation outsourcing
scenario (where clients outsource data to the cloud, expect the cloud to process it,
and send the results back). In Chap. 1, we show that, to make (basic, unsecured)
outsourcing cost effective, the cost savings (mainly from cheaper CPU cycles) need
to outweigh the cloud’s distance from clients. In S — L, outsourced tasks should
perform at least 1,000 CPU cycles per every 32 bit data, otherwise it is not worth
outsourcing them.

6.4 Encrypted Data Storage with Integrity

With an understanding of the basic boundary condition defining the viability of
outsourcing we now turn our attention to one of the most basic outsourcing scenarios
in which a single data client places data remotely for simple storage purposes. In the
S — L scenario, the amortized cost of storing a bit reliably either locally or remotely

Costs and Security in Clouds 49

is under 9 picocents/month (including power). Network transfer however, is of at
least 900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher.

From a technological cost-centric point of view it is simply not effective to
store data remotely: outsourced storage costs can be upwards of 2+ orders of
magnitude higher than local storage for the S — L scenario even in the absence
of security assurances.

Cost of Security. Yet, outsourced storage providers exist and thrive. This is likely
due to factors outside of our scope, such as the convenience of being able to have
access to the data from everywhere or collaborative application scenarios in which
multiple data users share single data stores (multi-client settings). Notwithstanding
the reason, since consumers have decided it is worth paying for outsourced storage,
the next question we ask is, how much more would security cost in this context? We
first survey some of the existing work.

Several existing systems encrypt data before storing it on potentially data-curious
servers [10, 12,43]. File systems such as IPES [34], GFS [22], and Checksummed
NCryptfs [54] perform online real-time integrity verification.

It can be seen that two main assurances are of concern here: integrity and
confidentiality. The cheapest integrity constructs deployed in most of the above
revolve around the use of hash-based MACs. As discussed above, SHA-1 based
keyed MAC constructs with 4,096-byte blocks would cost around 4 picocent/byte
on the server and 200 picocents/byte on the client side, leading to a total cost of
about 25 picocents/bit. This is at least four times lower than the cost of storing the
bit for a year and at least one order of magnitude lower than the costs incurred by
transferring the same bit (at 900+ picocents/bit). Thus, for outsourced storage,
integrity assurance overheads are negligible.

For publicly verifiable constructs, crypto-hash chains can help amortize their
costs over multiple blocks. In the extreme case, a single signature could authenticate
an entire file system, at the expense of increased I/O overheads for verification.
Usually, a chain only includes a set of blocks.

For an average of twenty 4,096 byte blocks® secured by a single hash-chain
signed using 1,024-bit RSA, would yield an amortized cost approximately 1 M pic-
ocents per 4,096-byte block (304 picocents/bit) for client read verification and
180+ picocents/bit for write/signatures. This is up to 8 times more expensive than
the MAC based case.

3Douceur et al. [20], show that file sizes can be modeled using a log-normal distribution. E.g, for
ué =8.46, o¢ = 2.4 and 20,000 files, the median file size would be 4 KB, mean 80 KB, along with
a small number of files with sizes exceeding 1 GB [5,20].

50 Y. Chen and R. Sion
6.5 Searches on Encrypted Data

Confidentiality alone can be achieved by encrypting the outsourced content before
outsourcing to potentially access-curious servers. Once encrypted however, it cannot
be easily processed by servers.

One of the first processing primitives that has been explored allows clients to
search directly in remote encrypted data [6, 8, 17]. In these efforts, clients either
linearly process the data using symmetric key encryption mechanisms, or, more
often, outsource additional secure (meta)data mostly of size linear in the order of the
original data set. This meta-data aids the server in searching through the encrypted
data set while revealing as little as possible.

But is remote searching worth it vs. local storage? We concluded above that
simply using a cloud as a remote file server is extremely non-profitable, up to several
orders of magnitude. Could the searching application possibly make a difference?
This would hold if either (i) the task of searching would be extremely CPU intensive
allowing the cloud savings to kick in and offset the large losses due to network
transfer, or (ii) the search is extremely selective and its results are a very small
subset of the outsourced data set — thus amortizing the initial transfer cost over
multiple searches.

We note that existing work does not support any complex search predicates
outside of simple keyword matching search. Thus the only hope there is that the
search-related CPU load (e.g., string comparison) will be enough cheaper in the
cloud to offset the initial and result transfer costs.

Keyword searching can be done in asymptotically constant time, given enough
storage or logarithmic if B-trees are used. While the client could maintain indexes
and only deploy the cloud as a file server, we already discovered that this is not
going to be profitable. Thus if we are to have any chance to benefit here, the index
structures need to also be stored on the server.

In this case, the search cost includes the CPU cycle costs in reading the B-tree
and performing binary searches within B-tree nodes. As an example, consider 32 bit
search keys (e.g., as they can be read in one cycle from RAM), and a 1 TB database.
One to three CPU cycles are needed to initiate the disk DMA per reading, and
each comparison in the binary search requires another 1-3 cycles (for executing
a comparison conditional jump operation). A B-tree with 16 KB nodes will have
approximately a 1,000 fanout and a height of 4-5, so performing a search on
this B-tree index requires about 100-300 CPU cycles. Thus in this simple remote
search, S — L outsourcing would result in CPU-related savings of around 2,500—
8,000 picocents per access. Transferring 32 bits from S — L costs upwards of
900 picocents. Outsourced searching becomes thus more expensive for any results
upwards of 36 bytes per query.

Costs and Security in Clouds 51
6.6 Insights into Secure Query Processing

By now we start to suspect that similar insights hold also for outsourced query
processing. This is because we now know that (i) the tasks to be outsourced
should be CPU-intensive enough to offset the network overhead — in other words,
outsourcing peanut counting will never be profitable, and (ii) existing confidentiality
(e.g., homomorphisms) and integrity (e.g., hash trees, aggregated signatures, hash
chains) mechanisms can “secure” only very simple basic arithmetic (addition,
multiplication) or data retrieval (selection, projection) which would cost under a few
of cycles per word if done in an unsecured manner. In other words, we do not know
yet how to secure anything more complex than peanut counting. And outsourcing of
peanut counting is counter productive in the first place. Ergo our suspicion.

We start by surveying existing mechanisms. Hacigumus et al. [26] propose a
method to execute SQL queries over partly obfuscated outsourced data to protect
data confidentiality against a data-curious server. The main functionality relies on
(i) partly obfuscating the outsourced data by dividing it into a set of partitions, (ii)
query rewriting of original queries into querying referencing partitions instead of
individual tuples, and (iii) client-side pruning of (necessarily coarse grained) results.
The information leaked to the server is balancing a trade-off between client-side
and server-side processing, as a function of the data segment size. Hore et al. [30]
explores optimal bucket sizes for certain range queries.

Ge et al. [55] discuss executing aggregation queries with confidentiality on an
untrusted server. Unfortunately, due to the use of extremely expensive homomor-
phisms this scheme leads to large processing times for any reasonably security
parameter settings (e.g., for 1,024 bit fields, 124 days per query are required).

Other researchers have explored the issue of correctness in settings with
potentially malicious servers. In a publisher-subscriber model, Devanbu et al.
deployed Merkle trees to authenticate data published at a third party’s site [18], and
then explored a general model for authenticating data structures [39,40]. In [46,47]
as well as in [37], mechanisms for efficient integrity and origin authentication for
selection predicate query results are introduced. Different signature schemes (DSA,
RSA, Merkle trees [41] and BGLS [11]) are explored as potential alternatives for
data authentication primitives. In [36, 50] verification objects VO are deployed
to authenticate data retrieval in “edge computing” In [31, 38] Merkle tree and
cryptographic hashing constructs are deployed to authenticate range query results.

To summarize, existing secure outsourced query mechanisms deploy (i)
partitioning-based schemes and symmetric key encryption for (“statistical” only)
confidentiality, (i) homomorphisms for oblivious aggregation (SUM, COUNT)
queries (simply too slow to be practical), (iii) hash trees/chains and (iv) signature
chaining and aggregation to ensure correctness of selection/range queries and
projection operators. SUM, COUNT, and projection usually behave linearly in the
database size. Selection and range queries may be performed in constant time,
logarithmic time or linear time depending on the queried attribute (e.g., whether it
is a primary key) and the type of index used.

52 Y. Chen and R. Sion

For illustration purposes, w.l.o.g., consider a scenario most favorable to out-
sourcing, i.e., assuming the operations behave linearly and are extremely selective,
only incurring two 32-bit data transfers between the client and the cloud (one for
the instruction and one for the result). Informally, to offset the network cost of
900 x 32 x 2 = 57,600 picocents, only traversing a database of size at least 10°
will generate enough CPU cycle cost savings. Thus it seems that with very selective
queries (returning very little data) over large enough databases, outsourcing can
break even.

Cost of Security. In th